Generative AI Engineering: Techniques, Tools, and Applications

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-03
  • 售價: $1,110
  • 貴賓價: 9.5$1,055
  • 語言: 英文
  • 頁數: 66
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798332107023
  • ISBN-13: 9798332107023
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Generative AI Engineering: Techniques, Tools, and Applications is a comprehensive guide that delves into the fascinating world of generative artificial intelligence (AI). This book is designed for AI practitioners, researchers, and enthusiasts who want to understand the principles, methodologies, and practical implementations of generative models.

The journey begins with an introduction to generative AI, exploring its history, evolution, key applications, and the ethical considerations that come with this powerful technology. The fundamentals of machine learning and deep learning are covered next, laying a solid foundation with an overview of neural networks, their architectures, and common algorithms.

The book then delves into the heart of generative AI with detailed chapters on various generative models. Variational Autoencoders (VAEs) are explored first, from their mathematical foundations to implementation and real-world applications. This is followed by a deep dive into Generative Adversarial Networks (GANs), examining their architecture, training techniques, and different variants like DCGAN and StyleGAN.

Autoregressive models, including RNNs, LSTMs, and Transformers, are discussed next, highlighting their training and optimization techniques. Diffusion models, with their unique approach to generating data through noise reduction, are also thoroughly explained.

Advanced topics in generative AI are explored, including transfer learning, few-shot and zero-shot learning, and the integration of reinforcement learning. Hybrid models that combine different generative approaches are also discussed.

Practical implementation guides provide step-by-step instructions for building, training, and deploying generative models using popular tools and libraries like TensorFlow, PyTorch, and Keras. Evaluation and metrics chapters offer insights into assessing the performance of generative models using qualitative and quantitative measures.

The book also covers diverse applications and case studies, showcasing the impact of generative AI in fields such as image and text generation, music and audio synthesis, video creation, healthcare, and the creative industries.

Finally, the book addresses current challenges in generative AI, including ethical and societal impacts, and outlines future research directions that promise to drive the field forward.

商品描述(中文翻譯)

《生成式 AI 工程:技術、工具與應用》是一本全面的指南,深入探討生成式人工智慧(AI)的迷人世界。本書旨在為 AI 實踐者、研究人員和愛好者提供理解生成模型的原則、方法論和實際實現的資源。

旅程始於對生成式 AI 的介紹,探索其歷史、演變、關鍵應用以及這項強大技術所帶來的倫理考量。接下來涵蓋機器學習和深度學習的基本概念,為神經網絡、其架構和常見算法提供堅實的基礎。

本書接著深入生成式 AI 的核心,詳細介紹各種生成模型。首先探討變分自編碼器(Variational Autoencoders, VAEs),從其數學基礎到實現及實際應用。隨後深入生成對抗網絡(Generative Adversarial Networks, GANs),檢視其架構、訓練技術以及不同變體,如 DCGAN 和 StyleGAN。

接下來討論自回歸模型,包括 RNN、LSTM 和 Transformers,重點介紹其訓練和優化技術。擴散模型以其獨特的噪音減少生成數據的方法也得到了充分解釋。

本書探討生成式 AI 的進階主題,包括遷移學習、少量樣本學習和零樣本學習,以及強化學習的整合。還討論了結合不同生成方法的混合模型。

實踐實現指南提供逐步指導,教導讀者如何使用流行的工具和庫(如 TensorFlow、PyTorch 和 Keras)來構建、訓練和部署生成模型。評估和指標章節則提供了使用定性和定量方法評估生成模型性能的見解。

本書還涵蓋多樣的應用和案例研究,展示生成式 AI 在圖像和文本生成、音樂和音頻合成、視頻創作、醫療保健以及創意產業等領域的影響。

最後,本書探討生成式 AI 當前面臨的挑戰,包括倫理和社會影響,並概述未來的研究方向,這些方向有望推動該領域的發展。