Generative AI Math: Applications and Practical Insights (生成式人工智慧數學:應用與實務洞察)
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-06-23
- 售價: $900
- 貴賓價: 9.5 折 $855
- 語言: 英文
- 頁數: 164
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798329250718
- ISBN-13: 9798329250718
-
相關分類:
人工智慧
海外代購書籍(需單獨結帳)
相關主題
商品描述
"Generative AI Math: Applications and Practical Insights" delves into the intersection of mathematics and generative artificial intelligence, offering a comprehensive exploration of advanced AI concepts. Beginning with foundational topics such as probability theory, statistics, linear algebra, and calculus, the book provides readers with a robust understanding of the mathematical principles underpinning generative AI.
Moving beyond theory, the book explores various applications of generative AI across diverse domains. It covers image generation and transformation techniques like style transfer and super-resolution, text generation and summarization using models like GPT-3 and transformers, and music and art generation through neural networks and deep learning algorithms.
Furthermore, the book delves into cutting-edge topics such as reinforcement learning, Bayesian methods, and ethical considerations in AI, providing readers with insights into the latest advancements and future directions of generative AI technology. Practical examples, case studies, and hands-on exercises with complete solutions are included to facilitate learning and application.
"Generative AI Math: Applications and Practical Insights" serves as an invaluable resource for students, researchers, and practitioners looking to deepen their understanding of generative AI through a mathematical lens. By bridging the gap between theory and practice, the book equips readers with the tools and knowledge necessary to explore and innovate in the rapidly evolving field of artificial intelligence.
商品描述(中文翻譯)
《生成式人工智慧數學:應用與實務洞察》深入探討數學與生成式人工智慧的交集,全面探索先進的人工智慧概念。書中從概率論、統計學、線性代數和微積分等基礎主題開始,為讀者提供對生成式人工智慧背後數學原則的堅實理解。
超越理論,書中探討了生成式人工智慧在各個領域的多種應用。涵蓋了圖像生成和轉換技術,如風格轉換和超解析度,使用 GPT-3 和 transformers 等模型進行的文本生成和摘要,以及通過神經網絡和深度學習算法生成音樂和藝術。
此外,書中還深入探討了前沿主題,如強化學習、貝葉斯方法以及人工智慧中的倫理考量,為讀者提供對生成式人工智慧技術最新進展和未來方向的洞察。書中包含實用範例、案例研究和完整解答的實作練習,以促進學習和應用。
《生成式人工智慧數學:應用與實務洞察》是學生、研究人員和實務工作者深入理解生成式人工智慧的寶貴資源,透過數學的視角縮短理論與實踐之間的距離,為讀者提供探索和創新快速發展的人工智慧領域所需的工具和知識。