Generative AI Architecture: Design, Implementation, and Applications

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-19
  • 售價: $900
  • 貴賓價: 9.5$855
  • 語言: 英文
  • 頁數: 96
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798328878104
  • ISBN-13: 9798328878104
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"Generative AI Architecture: Design, Implementation, and Applications" explores the foundational concepts, methodologies, and practical applications of generative artificial intelligence. This comprehensive guide is structured to provide both novice learners and experienced practitioners with a deep understanding of how generative models work, their implementation across various domains, and their transformative impact on industries.

The book begins with an overview of AI and machine learning, tracing the evolution of generative models and highlighting their significance in modern technology. It delves into the core principles of generative models, including probability theory, basic machine learning concepts, and neural networks. Key techniques such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and other emerging models like flow-based and autoregressive models are explored in detail.

Readers are guided through hands-on tutorials and practical exercises that include complete solutions, enabling them to build and train generative models from scratch. The book covers critical aspects of model deployment, hyperparameter tuning, and evaluation metrics, ensuring a holistic understanding of the implementation process.

The application chapters highlight how generative AI is utilized in diverse fields such as image and video generation, text generation, natural language processing, and audio synthesis. Case studies and industry examples illustrate real-world scenarios where generative AI enhances creativity, automates processes, and drives innovation.

Ethical considerations and societal implications of generative AI are also discussed, addressing issues of bias, fairness, security, and privacy. The book concludes with a visionary outlook on future directions in generative AI, exploring emerging trends, interdisciplinary approaches, and the potential for AI to revolutionize various domains.

商品描述(中文翻譯)

《生成式人工智慧架構:設計、實作與應用》探討了生成式人工智慧的基本概念、方法論和實際應用。這本全面的指南旨在為初學者和經驗豐富的從業者提供深入了解生成模型運作方式、在各個領域的實作以及對產業的變革性影響。

本書首先概述了人工智慧和機器學習,追溯生成模型的演變,並強調其在現代科技中的重要性。接著深入探討生成模型的核心原則,包括機率論、基本的機器學習概念和神經網絡。關鍵技術如生成對抗網絡(GANs)、變分自編碼器(VAEs)以及其他新興模型如基於流的模型和自回歸模型都將詳細探討。

讀者將通過實作教程和實際練習進行指導,這些練習包括完整的解決方案,使他們能夠從零開始構建和訓練生成模型。本書涵蓋了模型部署、超參數調整和評估指標等關鍵方面,確保對實作過程有全面的理解。

應用章節強調生成式人工智慧在圖像和視頻生成、文本生成、自然語言處理和音頻合成等多個領域的應用。案例研究和行業範例展示了生成式人工智慧如何在現實世界中增強創造力、自動化流程並推動創新。

本書還討論了生成式人工智慧的倫理考量和社會影響,涉及偏見、公平性、安全性和隱私等問題。最後,本書以對生成式人工智慧未來方向的前瞻性展望作結,探討新興趨勢、跨學科方法以及人工智慧在各個領域革命化的潛力。