Mastering Generative AI and Data Engineering: Techniques, Tools, and Practical Applications: A Comprehensive Guide to Building, Scaling, and Securing
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-05-29
- 售價: $670
- 貴賓價: 9.5 折 $637
- 語言: 英文
- 頁數: 78
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798327030589
- ISBN-13: 9798327030589
-
相關分類:
人工智慧
海外代購書籍(需單獨結帳)
相關主題
商品描述
"Mastering Generative AI and Data Engineering: Techniques, Tools, and Practical Applications" is a comprehensive guide designed for professionals, researchers, and enthusiasts eager to delve into the world of generative AI and data engineering. This book offers an in-depth exploration of the fundamental concepts, cutting-edge techniques, and essential tools needed to build, scale, and secure generative AI solutions effectively.
Starting with an introduction to generative AI, the book covers its historical evolution, key terminologies, and diverse applications, such as image synthesis, text generation, and music composition. It delves into ethical considerations, highlighting the importance of responsible AI practices. Readers will gain a solid foundation in data engineering fundamentals, including data collection, storage, processing, and governance, essential for supporting robust AI models.
The book progresses to designing and implementing data pipelines, comparing real-time and batch processing strategies, and utilizing orchestration tools like Apache Airflow and Kafka. It emphasizes the importance of monitoring and maintaining data pipelines to ensure reliable performance.
A significant portion of the book is dedicated to deep learning techniques, including neural network architectures, training methodologies, and advanced generative models like GANs, VAEs, and reinforcement learning. It also explores state-of-the-art models such as transformers and hybrid generative techniques, offering practical code examples and use cases.
Chapters on project implementation guide readers through planning, data requirements, model selection, and evaluation metrics. Real-world case studies illustrate successful generative AI deployments, emphasizing scalability and performance optimization. The book also addresses security and privacy concerns, providing strategies to safeguard data and models against adversarial attacks.
To equip readers with the best tools and frameworks, the book reviews popular data engineering tools like Apache Hadoop and Spark, AI frameworks like TensorFlow and PyTorch, and cloud platforms like AWS and Google Cloud. Integration strategies for seamless data engineering and AI tool usage are also covered.
Finally, the book looks to the future, discussing emerging trends, advances in data engineering, AI integration with IoT and edge computing, and the evolving landscape of human-AI collaboration. This guide is an indispensable resource for anyone aiming to master generative AI and data engineering
商品描述(中文翻譯)
《掌握生成式人工智慧與資料工程:技術、工具與實用應用》是一本全面的指南,專為渴望深入了解生成式人工智慧和資料工程的專業人士、研究者和愛好者而設計。本書深入探討了建立、擴展和有效保護生成式人工智慧解決方案所需的基本概念、尖端技術和必要工具。
本書從生成式人工智慧的介紹開始,涵蓋其歷史演變、關鍵術語和多樣的應用,如圖像合成、文本生成和音樂創作。它深入探討了倫理考量,強調負責任的人工智慧實踐的重要性。讀者將獲得資料工程基本概念的堅實基礎,包括資料收集、儲存、處理和治理,這些都是支撐穩健人工智慧模型所必需的。
本書接著進入資料管道的設計與實施,對比即時處理和批次處理策略,並利用像 Apache Airflow 和 Kafka 等編排工具。它強調監控和維護資料管道以確保可靠性能的重要性。
書中有相當一部分專注於深度學習技術,包括神經網絡架構、訓練方法論,以及像 GANs、VAEs 和強化學習等先進的生成模型。它還探討了最先進的模型,如 transformers 和混合生成技術,並提供實用的程式碼範例和使用案例。
有關專案實施的章節指導讀者進行規劃、資料需求、模型選擇和評估指標。真實案例研究展示了成功的生成式人工智慧部署,強調可擴展性和性能優化。本書還針對安全性和隱私問題提供了保護資料和模型免受對抗性攻擊的策略。
為了讓讀者掌握最佳工具和框架,本書回顧了流行的資料工程工具,如 Apache Hadoop 和 Spark,人工智慧框架如 TensorFlow 和 PyTorch,以及雲平台如 AWS 和 Google Cloud。還涵蓋了無縫整合資料工程和人工智慧工具的策略。
最後,本書展望未來,討論新興趨勢、資料工程的進展、人工智慧與物聯網及邊緣計算的整合,以及人類與人工智慧合作的演變格局。本指南是任何希望掌握生成式人工智慧和資料工程的人的不可或缺的資源。