Diffusion Models: Practical Guide to AI Image Generation
Vemula, Anand
- 出版商: Independently Published
- 出版日期: 2024-05-18
- 售價: $990
- 貴賓價: 9.5 折 $941
- 語言: 英文
- 頁數: 30
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798325970764
- ISBN-13: 9798325970764
-
相關分類:
人工智慧
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book delves into the fascinating world of diffusion models, a powerful tool in generative AI. It equips readers with the knowledge to understand how these models work, explore their applications, and stay informed about future advancements.
Part 1: Introduction
- Chapter 1: Unveils the core concept of diffusion models. It explains how they work by adding noise to data and then learning to reverse the process, ultimately generating new, realistic outputs. The chapter also explores the various applications of diffusion models across diverse fields.
- Chapter 2: Introduces the broader landscape of generative AI models and compares diffusion models with other popular approaches like VAEs and GANs. This helps readers understand the unique strengths of diffusion models.
Part 2: Deep Dive
- Chapter 3: Dives deeper into the inner workings of diffusion models (optional for those without a strong mathematical background). It explores the concept of probability distributions and other key mathematical concepts that underpin these models.
- Chapter 4: Explains the diffusion process in detail, including the step-by-step addition of noise and different diffusion model architectures (e.g., U-Net, DDPM).
- Chapter 5: Explores how diffusion models learn to reverse the noise addition process. It delves into the training techniques and optimization methods used to achieve this remarkable feat.
- Chapter 6: Explains how to use a trained diffusion model to generate entirely new data. It covers different strategies for initiating the sampling process and controlling the generation by providing prompts or specific styles.
Part 3: Applications and Beyond
- Chapter 7: Showcases how diffusion models can be used for image editing tasks like inpainting (filling in missing parts) and style transfer (applying the style of one image to another).
- Chapter 8: Pushes the boundaries beyond images. It explores how diffusion models can be adapted to generate different data formats like text, audio, and even 3D structures, opening doors for creative writing, music generation, and scientific research.
- Chapter 9: Explores cutting-edge research on diffusion models, highlighting their increasing capabilities and potential future directions. This includes improving efficiency and control, making models more interpretable, and addressing ethical considerations.
Part 4: Conclusion
- Chapter 10: Discusses the significant impact of diffusion models on generative AI and various fields. It emphasizes the importance of responsible use and explores ethical considerations like bias, misinformation, and copyright ownership. The chapter concludes with a hopeful outlook on the future of diffusion models and their potential for human-AI collaboration.
Overall, this book offers a comprehensive and engaging introduction to diffusion models, empowering readers to not only understand but also leverage this powerful technology for creative exploration and innovation.
商品描述(中文翻譯)
這本書深入探討擴散模型的迷人世界,這是一種在生成式人工智慧中強大的工具。它使讀者具備理解這些模型如何運作的知識,探索其應用,並隨時了解未來的進展。
第一部分:介紹
- 第1章:揭示擴散模型的核心概念。它解釋了如何通過向數據添加噪聲來運作,然後學習逆轉這一過程,最終生成新的、真實的輸出。本章還探討了擴散模型在各個領域的多種應用。
- 第2章:介紹生成式人工智慧模型的更廣泛背景,並將擴散模型與其他流行方法如變分自編碼器(VAEs)和生成對抗網絡(GANs)進行比較。這有助於讀者理解擴散模型的獨特優勢。
第二部分:深入探討
- 第3章:深入探討擴散模型的內部運作(對於數學背景不強的讀者可選擇性閱讀)。它探討了概率分佈的概念以及支撐這些模型的其他關鍵數學概念。
- 第4章:詳細解釋擴散過程,包括逐步添加噪聲和不同的擴散模型架構(例如,U-Net、DDPM)。
- 第5章:探討擴散模型如何學習逆轉噪聲添加過程。深入研究為實現這一驚人成就所使用的訓練技術和優化方法。
- 第6章:解釋如何使用訓練好的擴散模型生成全新的數據。涵蓋了啟動取樣過程和通過提供提示或特定風格來控制生成的不同策略。
第三部分:應用及其延伸
- 第7章:展示擴散模型如何用於圖像編輯任務,如修補(填補缺失部分)和風格轉換(將一幅圖像的風格應用到另一幅圖像上)。
- 第8章:突破圖像的界限。探討擴散模型如何被調整以生成不同的數據格式,如文本、音頻,甚至3D結構,為創意寫作、音樂生成和科學研究開啟了新大門。
- 第9章:探討擴散模型的前沿研究,突顯其日益增強的能力和潛在的未來方向。這包括提高效率和控制,使模型更具可解釋性,以及解決倫理考量。
第四部分:結論
- 第10章:討論擴散模型對生成式人工智慧和各個領域的重大影響。強調負責任使用的重要性,並探討偏見、錯誤信息和版權擁有等倫理考量。本章以對擴散模型未來的希望展望和人類與人工智慧合作的潛力作結。
總體而言,這本書提供了對擴散模型的全面且引人入勝的介紹,使讀者不僅能理解這項強大技術,還能利用它進行創意探索和創新。