Image Processing and Computer Vision Algorithms With CUDA
暫譯: 使用CUDA的影像處理與電腦視覺演算法

Flux, Jamie

  • 出版商: Independently Published
  • 出版日期: 2024-11-23
  • 售價: $1,690
  • 貴賓價: 9.5$1,606
  • 語言: 英文
  • 頁數: 394
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798300982058
  • ISBN-13: 9798300982058
  • 相關分類: CUDAAlgorithms-data-structuresComputer Vision
  • 海外代購書籍(需單獨結帳)

商品描述

Unlock the true potential of GPU acceleration in image processing and computer vision with this comprehensive guide. Designed for researchers, practitioners, and advanced students, this book delves deep into cutting-edge algorithms optimized using pyCUDA, offering unparalleled performance improvements for real-world applications.

Key Features:

  • In-Depth Exploration of Advanced Algorithms: Each chapter provides a meticulous analysis of specific, state-of-the-art algorithms, pushing the boundaries of current knowledge and exploring uncharted territories in the field.
  • Optimization with pyCUDA: Learn how to harness the massive parallelism of CUDA-enabled GPUs using pyCUDA, transforming computational workflows for real-time processing.
  • Innovative Methodologies: Discover original theoretical frameworks, novel methodologies, and interdisciplinary perspectives that challenge the status quo and inspire new horizons.
  • Practical Implementation Details: Gain insights into optimizing memory management, thread synchronization, and kernel configurations to maximize computational efficiency.

Sample Topics Covered:

  • Optimized Convolutional Filtering Techniques: Implement convolutional filters like Gaussian and Laplacian kernels using pyCUDA, achieving real-time performance even on high-resolution images through optimized memory access and data transfer strategies.
  • Adaptive Edge Detection with Dynamic Thresholding: Explore novel adaptive edge detection algorithms employing dynamic thresholding mechanisms that adjust in real-time based on local image statistics, enhancing accuracy in varying illumination and noise conditions.
  • Advanced Image Segmentation with Graph-Based Methods: Model images as weighted graphs and implement parallel algorithms for graph construction and label propagation, utilizing spectral clustering and community detection techniques optimized for GPU architectures.
  • Accelerated Histogram Equalization and Contrast Enhancement: Learn to compute histograms and cumulative distribution functions in parallel, implementing adaptive methods like Contrast Limited Adaptive Histogram Equalization (CLAHE) for efficient image enhancement.
  • Feature Detection and Description with SURF and SIFT Algorithms: Master the implementation of Speeded-Up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT) on GPUs, optimizing integral image computations and descriptor matching for real-time applications.
  • Advanced Optical Flow Estimation: Dive into optical flow computation using Lucas-Kanade and Horn-Schunck methods, optimized for GPUs to handle large displacements and occlusions with real-time performance.
  • Stereo Vision and Depth Map Estimation: Implement depth estimation techniques using block matching and semi-global matching methods, optimizing cost aggregation and handling of occlusions for high-resolution stereo images.
  • Wavelet Transformations for Multi-Resolution Processing: Utilize discrete wavelet transforms for tasks like denoising and compression, implementing both 1D and 2D transformations efficiently on GPUs.
  • Real-Time Object Recognition with HOG Features: Accelerate object recognition using Histogram of Oriented Gradients (HOG) descriptors, optimizing gradient histograms and detection strategies for applications like pedestrian and vehicle recognition.
  • Image Registration Techniques Using Mutual Information: Apply multi-modal image registration using mutual information metrics, optimizing joint histogram estimation and transformation handling for applications in medical imaging and panorama stitching.

商品描述(中文翻譯)

解鎖 GPU 加速在影像處理和計算機視覺中的真正潛力,這本全面的指南專為研究人員、實務工作者和高級學生設計,深入探討使用 pyCUDA 優化的尖端演算法,為現實世界的應用提供無與倫比的性能提升。

主要特點:



  • 深入探索先進演算法: 每一章提供對特定最先進演算法的細緻分析,推動當前知識的邊界,探索該領域未開發的領域。


  • 使用 pyCUDA 進行優化: 學習如何利用 CUDA 支援的 GPU 的巨大平行處理能力,使用 pyCUDA 轉變計算工作流程以實現即時處理。


  • 創新方法論: 發現原創的理論框架、新穎的方法論和跨學科的觀點,挑戰現狀並啟發新的視野。


  • 實用實施細節: 獲得優化記憶體管理、執行緒同步和核心配置的見解,以最大化計算效率。

涵蓋的示例主題:



  • 優化的卷積濾波技術: 使用 pyCUDA 實現高斯和拉普拉斯核等卷積濾波器,通過優化的記憶體訪問和數據傳輸策略,在高解析度影像上實現即時性能。




  • 動態閾值的自適應邊緣檢測: 探索使用動態閾值機制的創新自適應邊緣檢測演算法,根據局部影像統計即時調整,提高在不同光照和噪聲條件下的準確性。




  • 基於圖的高級影像分割: 將影像建模為加權圖,實現圖構建和標籤傳播的平行演算法,利用針對 GPU 架構優化的光譜聚類和社群檢測技術。




  • 加速的直方圖均衡和對比度增強: 學習如何平行計算直方圖和累積分佈函數,實現自適應方法如對比度限制自適應直方圖均衡 (CLAHE) 以高效增強影像。




  • 使用 SURF 和 SIFT 演算法的特徵檢測與描述: 精通在 GPU 上實現加速穩健特徵 (SURF) 和尺度不變特徵變換 (SIFT),優化積分影像計算和描述符匹配以應用於即時應用。




  • 高級光流估計: 深入探討使用 Lucas-Kanade 和 Horn-Schunck 方法的光流計算,針對 GPU 進行優化,以處理大位移和遮擋,實現即時性能。




  • 立體視覺和深度圖估計: 使用區塊匹配和半全局匹配方法實現深度估計技術,優化成本聚合和遮擋處理,以適應高解析度立體影像。




  • 多解析度處理的小波變換: 利用離散小波變換進行去噪和壓縮等任務,效率地在 GPU 上實現 1D 和 2D 變換。




  • 使用 HOG 特徵的即時物體識別: 使用方向梯度直方圖 (HOG) 描述符加速物體識別,優化梯度直方圖和檢測策略,以應用於行人和車輛識別。




  • 使用互信息的影像配準技術: 應用多模態影像配準,使用互信息度量,優化聯合直方圖估計和變換處理,以應用於醫學影像和全景拼接。