練好深度學習的基本功|用 Python 進行基礎數學理論的實作

立石賢吾 著 衛宮紘 譯

  • 出版商: 碁峰
  • 出版日期: 2020-08-06
  • 定價: $560
  • 售價: 7.9$442
  • 語言: 繁體中文
  • 頁數: 352
  • 裝訂: 平裝
  • ISBN: 9865025477
  • ISBN-13: 9789865025472
  • 相關分類: DeepLearning
  • 立即出貨 (庫存 > 10)

  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-1
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-2
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-3
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-4
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-5
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-6
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-7
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-8
  • 練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-9
練好深度學習的基本功|用 Python 進行基礎數學理論的實作-preview-1

買這商品的人也買了...

相關主題

商品描述

從基本暸解深度學習的運作機制!
詳盡解說讓不擅長數學的人也能夠暸解。
僅用Python和NumPy,就可一步一腳印完成實作!
獻給想要跨出「只會使用函式庫實作」舒適圈的人

「雖然我知道如何透過函式庫來做深度學習,但其實並不曉得它到底是怎麼運作」
「想要了解深度學習的數學原理,搞懂深度學習的運作方式」

本書就是為了滿足這樣的需求而推出的。透過朋友之間的對話,採用原理解說與實作並行的方式,從最基礎的原點開始重新認識深度學習。

.何謂類神經網路
.如何實作感知器演算法
.類神經網路如何學習權重和偏差
.如何正確學習參數解題
.實作卷積神經網路
 

作者簡介

立石賢吾
佐賀大學畢業後經歷數間開發公司,於2014年進入LINE Fukuoka,負責商品推薦、文件分類等的機器學習產品。2019年進入SmartNews,擔任機器學習工程師。

目錄大綱

Chapter 1|開始接觸類神經網路
類神經網路是什麼東西?先來比較跟其他機器學習演算法的差異,再以圖片、簡單的數學式解說類神經網路的結構與能夠做到哪些事情。

Chapter 2|學習正向傳播
解說構成感知器類神經網路的單純演算法是如何進行運算,舉判別圖像尺寸為例,學習從輸入值到輸出值依序計算的「正向傳播」。

Chapter 3|學習反向傳播
說明在類神經網路上,如何求得適當的權重與偏差。使用微分更新權重與偏差,盡可能減少「誤差」,但正攻法的計算相當麻煩,因此我們會採用簡化計算的「誤差反向傳播法」。

Chapter 4|學習卷積類神經網路
學會類神經網路的基本原理後,接著學習使用卷積類神經網路處理圖像,舉出卷積類神經網路的特有機制、運算,並說明權重、偏差的更新方法。

Chapter 5|實作類神經網路
根據前面章節學到的類神經網路計算方法, 使用Python編寫程式。以Chapter 2、3 出現的基本類神經網路,實作圖像的尺寸判定;以Chapter 4出現的卷積類神經網路實作手寫文字辨識。

Appendix
收錄Chapter 1 ∼ 5未能詳細解說的數學知識、Python程式設計的環境設置、Python與NumPy的簡易說明。