A First Course in Abstract Algebra With Applications, 3/e (Paperback)
暫譯: 抽象代數入門與應用(第三版,平裝本)
Joseph J. Rotman
- 出版商: Pearson FT Press
- 出版日期: 2006-01-01
- 定價: $1,190
- 售價: 9.8 折 $1,166
- 語言: 英文
- 頁數: 644
- ISBN: 9862800135
- ISBN-13: 9789862800133
下單後立即進貨 (約5~7天)
商品描述
Description
This text introduces students to the algebraic concepts of group and rings, providing a comprehensive discussion of theory as well as a significant number of applications for each.
Features
- Comprehensive coverage of abstract algebra – Includes discussions of the fundamental theorem of Galois theory; Jordan-Holder theorem; unitriangular groups; solvable groups; construction of free groups; von Dyck's theorem, and presentations of groups by generators and relations.
- Significant applications for both group and commutative ring theories, especially with Gr o bner bases – Helps students see the immediate value of abstract algebra.
- Flexible presentation – May be used to present both ring and group theory in one semester, or for two-semester course in abstract algebra.
- Number theory – Presents concepts such as induction, factorization into primes, binomial coefficients and DeMoivre's Theorem, so students can learn to write proofs in a familiar context.
- Section on Euclidean rings – Demonstrates that the quotient and remainder from the division algorithm in the Gaussian integers may not be unique. Also, Fermat's Two-Squares theorem is proved.
- Sylow theorems – Discusses the existence of Sylow subgroups as well as conjugacy and the congruence condition on their number.
- Fundamental theorem of finite abelian groups – Covers the basis theorem as well as the uniqueness to isomorphism
- Extensive references and consistent numbering system for lemmas, theorems, propositions, corollaries, and examples – Clearly organized notations, hints, and appendices simplify student reference.
New to This Edition
- Rewritten for smoother exposition – Makes challenging material more accessible to students.
- Updated exercises – Features challenging new problems, with redesigned page and back references for easier access.
- Extensively revised Ch. 2 (groups) and Ch. 3 (commutative rings ) – Makes chapters independent of one another, giving instructors increased flexibility in course design.
- New coverage of codes – Includes 28-page introduction to codes, including a proof that Reed-Solomon codes can be decoded.
- New section on canonical forms (Rational, Jordan, Smith) for matrices – Focuses on the definition and basic properties of exponentiation of complex matrices, and why such forms are valuable.
- New classification of frieze groups – Discusses why viewing the plane as complex numbers allows one to describe all isometries with very simple formulas.
- Expanded discussion of orthogonal Latin squares – Includes coverage of magic squares.
- Special Notation section – References common symbols and the page on which they are introduced.
商品描述(中文翻譯)
描述
本書介紹學生群和環的代數概念,提供理論的全面討論以及每個概念的眾多應用。
特色
- 全面涵蓋抽象代數 – 包括對伽羅瓦理論基本定理、喬丹-霍爾德定理、單三角群、可解群、自由群的構造、馮·迪克定理,以及通過生成元和關係的群的表示的討論。
- 群和交換環理論的重要應用,特別是與 Gr o bner 基的關聯 – 幫助學生看到抽象代數的直接價值。
- 靈活的呈現方式 – 可用於在一學期內介紹環和群理論,或用於兩學期的抽象代數課程。
- 數論 – 提出如數學歸納法、質因數分解、二項係數和德莫弗定理等概念,讓學生能在熟悉的背景下學習撰寫證明。
- 歐幾里得環的部分 – 演示高斯整數的除法算法中的商和餘數可能不是唯一的。此外,證明了費馬的兩平方定理。
- Sylow 定理 – 討論 Sylow 子群的存在性以及共軛性和其數量的同餘條件。
- 有限阿貝爾群的基本定理 – 涵蓋基礎定理以及同構的唯一性。
- 廣泛的參考文獻和一致的引理、定理、命題、推論和例子的編號系統 – 清晰組織的符號、提示和附錄簡化了學生的參考。
本版新內容
- 重新編寫以使表述更流暢 – 使挑戰性的材料對學生更易於理解。
- 更新的練習題 – 包含具有挑戰性的全新問題,重新設計的頁面和後參考以便於訪問。
- 第2章(群)和第3章(交換環)經過廣泛修訂 – 使章節彼此獨立,給予教師在課程設計上的更大靈活性。
- 新增代碼的內容 – 包括28頁的代碼介紹,包含證明 Reed-Solomon 代碼可以被解碼。
- 新增矩陣的典範形式(有理、喬丹、史密斯)部分 – 專注於複數矩陣的指數運算的定義和基本性質,以及這些形式的價值所在。
- 新增冰紋群的分類 – 討論為何將平面視為複數可以用非常簡單的公式描述所有等距變換。
- 擴展的正交拉丁方討論 – 包括對魔方的涵蓋。
- 特殊符號部分 – 參考常見符號及其介紹的頁面。
目錄大綱
Table of Contents
Chapter 1: Number Theory
Chapter 2: Groups I
Chapter 3: Commutative Rings I
Chapter 4: Linear Algebra
Chapter 5: Fields
Chapter 6: Groups II
Chapter 7: Commutative Rings III
目錄大綱(中文翻譯)
Table of Contents
Chapter 1: Number Theory
Chapter 2: Groups I
Chapter 3: Commutative Rings I
Chapter 4: Linear Algebra
Chapter 5: Fields
Chapter 6: Groups II
Chapter 7: Commutative Rings III