Online Machine Learning: A Practical Guide with Examples in Python
Bartz, Eva, Bartz-Beielstein, Thomas
- 出版商: Springer
- 出版日期: 2024-02-06
- 售價: $2,750
- 貴賓價: 9.5 折 $2,613
- 語言: 英文
- 頁數: 155
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9819970067
- ISBN-13: 9789819970063
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book deals with the exciting, seminal topic of Online Machine Learning (OML). The content is divided into three parts: the first part looks in detail at the theoretical foundations of OML, comparing it to Batch Machine Learning (BML) and discussing what criteria should be developed for a meaningful comparison. The second part provides practical considerations, and the third part substantiates them with concrete practical applications.
The book is equally suitable as a reference manual for experts dealing with OML, as a textbook for beginners who want to deal with OML, and as a scientific publication for scientists dealing with OML since it reflects the latest state of research. But it can also serve as quasi OML consulting since decision-makers and practitioners can use the explanations to tailor OML to their needs and use it for their application and ask whether the benefits of OML might outweigh the costs.
OML will soon become practical; it is worthwhile to get involved with it now. This book already presents some tools that will facilitate the practice of OML in the future. A promising breakthrough is expected because practice shows that due to the large amounts of data that accumulate, the previous BML is no longer sufficient. OML is the solution to evaluate and process data streams in real-time and deliver results that are relevant for practice.
商品描述(中文翻譯)
這本書探討了令人興奮且具有開創性的線上機器學習(OML)主題。內容分為三個部分:第一部分詳細探討了OML的理論基礎,將其與批次機器學習(BML)進行比較,並討論了應該開發哪些標準來進行有意義的比較。第二部分提供了實際考慮因素,第三部分則以具體的實際應用來支持這些考慮因素。
這本書同樣適合作為OML專家的參考手冊,初學者學習OML的教材,以及科學家們的科學出版物,因為它反映了最新的研究狀態。但它也可以作為幾乎OML諮詢的用途,因為決策者和實踐者可以使用解釋來根據自己的需求量身定制OML,並將其應用於實踐中,並詢問OML的好處是否超過成本。
OML將很快變得實用;現在就參與其中是值得的。這本書已經介紹了一些將來將促進OML實踐的工具。由於實踐表明,由於累積的大量數據,以前的BML已經不再足夠。OML是評估和處理實時數據流並提供實踐相關結果的解決方案。
作者簡介
Eva Bartz is an expert in law and data protection. Within the wide area of data protection, she specializes particularly in the application of artificial intelligence and its benefits and dangers. Based on this vast experience, she founded Bartz & Bartz GmbH in 2014 together with Thomas Bartz-Beielstein and offers consulting for a variety of customers. She translates the academic expertise of Bartz & Bartz GmbH's advisors - who are leading experts in their fields - into a benefit for her customers. One of these customers was the Federal Statistical Office of Germany (Destatis), and the study for them laid the groundwork for this book.
作者簡介(中文翻譯)
Prof. Dr. Thomas Bartz-Beielstein 是一位擁有30多年經驗的人工智慧專家。他是德國科隆應用數學教授,也是數據科學、工程和分析學院(IDE+A)的所長。他的研究領域包括人工智慧、機器學習、模擬和優化。他開發了連續參數優化(SPO)方法,該方法結合了基於代理模型的優化和演化計算的方法。他在應用數學、統計學、實驗設計、基於模擬的優化以及水工業、電梯控制或機械工程等領域的應用上有豐富的經驗。
Eva Bartz 是一位法律和數據保護專家。在廣泛的數據保護領域中,她專門研究人工智慧的應用及其帶來的益處和危險。基於這方面的廣泛經驗,她於2014年與Thomas Bartz-Beielstein共同創辦了Bartz & Bartz GmbH,為各種客戶提供咨詢服務。她將Bartz & Bartz GmbH的顧問們的學術專業知識轉化為對客戶的實際利益。其中一個客戶是德國聯邦統計局(Destatis),為他們進行的研究為本書奠定了基礎。