Computer Vision Metrics: Survey, Taxonomy, and Analysis of Computer Vision, Visual Neuroscience, and Visual AI
暫譯: 計算機視覺指標:調查、分類及計算機視覺、視覺神經科學與視覺人工智慧的分析

Krig, Scott

  • 出版商: Springer
  • 出版日期: 2025-04-17
  • 售價: $4,380
  • 貴賓價: 9.5$4,161
  • 語言: 英文
  • 頁數: 790
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9819933927
  • ISBN-13: 9789819933921
  • 相關分類: 人工智慧Computer Vision
  • 海外代購書籍(需單獨結帳)

商品描述

This 2nd Edition, based on the successful 2016 textbook, has been updated and expanded to cover 3rd generation Computer Vision and AI as it supersedes historical visual computing methods, providing a comprehensive survey of essential topics and methods in Computer Vision. With over 1,200 essential references, as well as chapter-by-chapter learning assignments, the book offers a valuable resource for students, researchers, scientists and engineers, helping them dig deeper into core computer vision and foundational visual computing and neuroscience topics.

As before, a historical survey of advances in Computer Vision is provided, updated to reflect the latest methods such as Vision Transformers, attention models, alternative features such as Fourier neurons and Binary neurons, hybrid DNN architectures, self-supervised and enhanced learning models, Associative Multimodal Learning, Continuous Learning, View Synthesis, intelligent Scientific Imaging, andadvances in training protocols. Updates have also been added for 2d/3d cameras, software libraries and open source resources, computer vision cloud services, and vision/AI hardware accelerators. Discussion and analysis are provided to uncover intuition and delve into the essence of key advancements, applied and forward-looking topics.


商品描述(中文翻譯)

本書第二版基於2016年成功的教科書進行更新和擴展,涵蓋第三代計算機視覺和人工智慧,取代了歷史上的視覺計算方法,提供計算機視覺中基本主題和方法的全面調查。書中包含超過1,200個重要參考文獻,以及逐章的學習任務,為學生、研究人員、科學家和工程師提供了寶貴的資源,幫助他們深入探討核心計算機視覺及基礎視覺計算和神經科學主題。

如同之前的版本,本書提供了計算機視覺進展的歷史調查,並更新以反映最新的方法,如視覺變壓器(Vision Transformers)、注意力模型(attention models)、替代特徵如傅立葉神經元(Fourier neurons)和二元神經元(Binary neurons)、混合深度神經網絡架構(hybrid DNN architectures)、自我監督和增強學習模型(self-supervised and enhanced learning models)、聯想多模態學習(Associative Multimodal Learning)、持續學習(Continuous Learning)、視圖合成(View Synthesis)、智能科學成像(intelligent Scientific Imaging)以及訓練協議的進展。還新增了有關2D/3D相機、軟體庫和開源資源、計算機視覺雲服務以及視覺/人工智慧硬體加速器的更新。書中提供了討論和分析,以揭示直覺並深入探討關鍵進展的本質、應用和前瞻性主題。

作者簡介

Scott Krig is a pioneer in computer imaging, computer vision, and graphics visualization. He founded Krig Research in 1988, providing the world's first image and vision systems based on high-performance engineering workstations, super-computers, and dedicated hardware, with optimized computer vision and imaging software libraries for a wide range of applications, serving customers in 25 countries around the globe. Scott is also the author of Synthetic Vision Using Volume Learning and Visual DNA, which presents a multi-dimensional and multivariate feature learning approach to computer vision, intended as the basis for a public Visual Genome Project to catalog all (or nearly all) visual features composing visual objects. Scott studied at Stanford and is the author of patent applications worldwide in various fields, including imaging, computer vision, embedded systems, DRM and computer security.


作者簡介(中文翻譯)

斯科特·克里格(Scott Krig)是計算機成像、計算機視覺和圖形可視化的先驅。他於1988年創立了Krig Research,提供全球首個基於高性能工程工作站、超級計算機和專用硬體的影像和視覺系統,並針對各種應用優化了計算機視覺和成像軟體庫,服務於全球25個國家的客戶。斯科特也是《使用體積學習的合成視覺》(Synthetic Vision Using Volume Learning)和《視覺DNA》(Visual DNA)的作者,這些著作提出了一種多維和多變量特徵學習的方法,旨在作為公共視覺基因組計畫的基礎,以編目所有(或幾乎所有)構成視覺物體的視覺特徵。斯科特在史丹佛大學(Stanford)學習,並在影像、計算機視覺、嵌入式系統、數位版權管理(DRM)和計算機安全等多個領域擁有全球專利申請的作者。

最後瀏覽商品 (20)