ADVANCES IN COMBINATORIAL OPTIMIZATION: LINEAR PROGRAMMING FORMULATIONS OF THE TRAVELING SALESMAN AND OTHER HARD COMBINATORIAL OPTIMIZATION PROBLEMS

Moustapha Diaby

  • 出版商: World Scientific Pub
  • 出版日期: 2016-01-23
  • 售價: $4,280
  • 貴賓價: 9.5$4,066
  • 語言: 英文
  • 頁數: 220
  • 裝訂: Paperback
  • ISBN: 9814704873
  • ISBN-13: 9789814704878
  • 相關分類: R 語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Combinational optimization (Co) is a topic in applied mathematics, decision science and computer science that consists of finding the best solution from a non-exhaustive search. Co is related to disciplines such as computational complexity theory and algorithm theory, and has important applications in fields such as operations research/management science, artificial intelligence, machine learning, and software engineering. Advances in Combinatorial Optimization presents a generalized framework for formulating hard combinatorial optimization problems (Cops) as polynomial sized linear programs. Though developed based on the 'traveling salesman problem' (Tsp), the framework allows for the formulating of many of the well-known Np-Complete Cops directly (without the need to reduce them to other Cops) as linear programs, and demonstrates the same for three other problems (e.g. the 'vertex coloring problem' (Vcp)). This work also represents a proof of the equality of the complexity classes "P" (polynomial time) and "Np" (nondeterministic polynomial time), and makes a contribution to the theory and application of 'extended formulations' (Efs). On a whole, Advances in Combinatorial Optimization offers new modeling and solution perspectives which will be useful to professionals, graduate students and researchers who are either involved in routing, scheduling and sequencing decision-making in particular, or in dealing with the theory of computing in general.

商品描述(中文翻譯)

組合優化(Co)是應用數學、決策科學和計算機科學的一個主題,旨在從非穩定的搜尋中找到最佳解。組合優化與計算複雜性理論和演算法理論等學科相關,並在運籌學/管理科學、人工智慧、機器學習和軟體工程等領域具有重要應用。《組合優化的進展》提出了一個通用框架,用於將困難的組合優化問題(Cops)表述為多項式大小的線性規劃。雖然該框架是基於「旅行推銷員問題」(Tsp)發展而來,但它允許將許多著名的 NP-完全組合優化問題直接(無需將其簡化為其他組合優化問題)表述為線性規劃,並對其他三個問題(例如「頂點著色問題」(Vcp))展示了相同的做法。這項工作還證明了複雜性類別「P」(多項式時間)和「NP」(非確定性多項式時間)之間的等價性,並對「擴展表述」(Efs)的理論和應用做出了貢獻。總的來說,《組合優化的進展》提供了新的建模和解決方案視角,對於從事路由、排程和排序決策的專業人士、研究生和研究人員,或一般處理計算理論的人士都將是有用的。