Joint Training for Neural Machine Translation
暫譯: 神經機器翻譯的聯合訓練

Cheng, Yong

  • 出版商: Springer
  • 出版日期: 2019-09-06
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 78
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9813297476
  • ISBN-13: 9789813297470
  • 海外代購書籍(需單獨結帳)

商品描述

This book presents four approaches to jointly training bidirectional neural machine translation (NMT) models. First, in order to improve the accuracy of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to incorporate these corpora into neural machine translation. It then introduces a joint training algorithm for pivot-based neural machine translation, which can be used to mitigate the data scarcity problem. Lastly it describes an end-to-end bidirectional NMT model to connect the source-to-target and target-to-source translation models, allowing the interaction of parameters between these two directional models.

商品描述(中文翻譯)

本書介紹了四種共同訓練雙向神經機器翻譯(NMT)模型的方法。首先,為了提高注意力機制的準確性,提出了一種基於一致性的共同訓練方法,以幫助這兩個互補模型在相同的訓練數據上達成對單詞對齊矩陣的共識。其次,介紹了一種半監督的方法,利用自編碼器重建單語語料庫,從而將這些語料庫納入神經機器翻譯中。接著,介紹了一種基於樞紐的神經機器翻譯的共同訓練算法,可用於緩解數據稀缺問題。最後,描述了一種端到端的雙向NMT模型,將源語到目標語和目標語到源語的翻譯模型連接起來,允許這兩個方向模型之間的參數互動。

作者簡介

Yong Cheng is currently a software engineer engaged in research at Google. Before joining Google, he worked as a senior researcher at Tencent AI Lab. He obtained his Ph.D. from the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University in 2017. His research interests focus on neural machine translation and natural language processing.

作者簡介(中文翻譯)

Yong Cheng 目前是一名在 Google 從事研究的軟體工程師。在加入 Google 之前,他曾擔任騰訊 AI 實驗室的高級研究員。他於 2017 年在清華大學跨學科資訊科學研究所 (IIIS) 獲得博士學位。他的研究興趣集中在神經機器翻譯和自然語言處理。