Cognitively Inspired Natural Language Processing: An Investigation Based on Eye-tracking (Cognitive Intelligence and Robotics)
暫譯: 以認知啟發的自然語言處理:基於眼動追蹤的研究(認知智能與機器人技術)

Abhijit Mishra, Pushpak Bhattacharyya

  • 出版商: Springer
  • 出版日期: 2018-08-09
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 174
  • 裝訂: Hardcover
  • ISBN: 9811315159
  • ISBN-13: 9789811315152
  • 相關分類: 機器人製作 Robots
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

This book shows ways of augmenting the capabilities of Natural Language Processing (NLP) systems by means of cognitive-mode language processing. The authors employ eye-tracking technology to record and analyze shallow cognitive information in the form of gaze patterns of readers/annotators who perform language processing tasks. The insights gained from such measures are subsequently translated into systems that help us (1) assess the actual cognitive load in text annotation, with resulting increase in human text-annotation efficiency, and (2) extract cognitive features that, when added to traditional features, can improve the accuracy of text classifiers. In sum, the authors’ work successfully demonstrates that cognitive information gleaned from human eye-movement data can benefit modern NLP.

Currently available Natural Language Processing (NLP) systems are weak AI systems: they seek to capture the functionality of human language processing, without worrying about how this processing is realized in human beings’ hardware. In other words, these systems are oblivious to the actual cognitive processes involved in human language processing. This ignorance, however, is NOT bliss! The accuracy figures of all non-toy NLP systems saturate beyond a certain point, making it abundantly clear that “something different should be done.” 

商品描述(中文翻譯)

這本書展示了通過認知模式語言處理來增強自然語言處理(Natural Language Processing, NLP)系統能力的方法。作者利用眼動追蹤技術記錄和分析讀者/註釋者在執行語言處理任務時的注視模式所形成的淺層認知信息。從這些測量中獲得的見解隨後被轉化為系統,幫助我們(1)評估文本註釋中的實際認知負荷,從而提高人類文本註釋的效率,以及(2)提取認知特徵,這些特徵在添加到傳統特徵後,可以提高文本分類器的準確性。總之,作者的研究成功地展示了從人類眼動數據中獲得的認知信息如何能夠惠及現代NLP。

目前可用的自然語言處理(NLP)系統是弱人工智慧系統:它們試圖捕捉人類語言處理的功能,而不考慮這種處理在人體硬體中的實現方式。換句話說,這些系統對人類語言處理中涉及的實際認知過程毫無所知。然而,這種無知並不是幸福!所有非玩具型NLP系統的準確性數據在某一點後會飽和,這清楚地表明「應該採取不同的方法」。