Intelligent Control: A Stochastic Optimization Based Adaptive Fuzzy Approach (Cognitive Intelligence and Robotics)
暫譯: 智能控制:基於隨機優化的自適應模糊方法(認知智能與機器人技術)
Kaushik Das Sharma, Amitava Chatterjee, Anjan Rakshit
- 出版商: Springer
- 出版日期: 2018-09-05
- 售價: $7,100
- 貴賓價: 9.5 折 $6,745
- 語言: 英文
- 頁數: 302
- 裝訂: Hardcover
- ISBN: 9811312974
- ISBN-13: 9789811312977
-
相關分類:
機器人製作 Robots
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H∞ theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H∞ theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H∞ theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.
商品描述(中文翻譯)
本書討論了穩定自適應模糊邏輯控制器的系統設計,採用了基於Lyapunov策略的方法/H∞理論的方法與當代隨機優化技術的混合。文本展示了如何利用候選的隨機優化技術,如粒子群優化(Particle swarm optimization, PSO)、和諧搜尋(harmony search, HS)算法、協方差矩陣適應(covariance matrix adaptation, CMA)等,與Lyapunov理論/H∞理論結合,以開發這類混合控制策略。開發一系列這種混合過程的目標是結合基於Lyapunov理論/H∞理論的局部搜尋方法和基於隨機優化的全局搜尋方法的優勢,以達成優越的控制算法,能夠同時實現所需的漸進性能並提供改善的瞬態響應。本書還展示了這些智能自適應控制算法如何有效應用於現實生活中的應用,例如在具有傳輸延遲的空氣加熱系統的溫度控制、移動機器人的視覺導航、機器人操控器的智能控制等。