Kinesthetic Perception: A Machine Learning Approach (Studies in Computational Intelligence)
暫譯: 動覺感知:機器學習方法(計算智慧研究)
Subhasis Chaudhuri, Amit Bhardwaj
- 出版商: Springer
- 出版日期: 2017-11-09
- 售價: $4,200
- 貴賓價: 9.5 折 $3,990
- 語言: 英文
- 頁數: 138
- 裝訂: Hardcover
- ISBN: 9811066914
- ISBN-13: 9789811066917
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on the study of possible adaptive sampling mechanisms for haptic data compression aimed at applications like tele-operations and tele-surgery. Demonstrating that the selection of the perceptual dead zones is a non-trivial problem, it presents an exposition of various issues that researchers must consider while designing compression algorithms based on just noticeable difference (JND). The book begins by identifying perceptually adaptive sampling strategies for 1-D haptic signals, and goes on to extend the findings on multidimensional signals to study directional sensitivity, if any. The book also discusses the effect of the rate of change of kinesthetic stimuli on the JND, temporal resolution for the perceivability of kinesthetic force stimuli, dependence of kinesthetic perception on the task being performed, the sequential effect on kinesthetic perception, and, correspondingly, on the perceptual dead zone. Offering a valuable resource for researchers, professionals, and graduate students working on haptics and machine perception studies, the book can also support interdisciplinary work focused on automation in surgery.
商品描述(中文翻譯)
本書專注於研究針對觸覺數據壓縮的可能自適應取樣機制,旨在應用於遠程操作和遠程手術等領域。書中展示了感知死區的選擇是一個非平凡的問題,並闡述了研究人員在設計基於剛剛可察覺差異(just noticeable difference, JND)的壓縮算法時必須考慮的各種問題。本書首先確定了針對一維觸覺信號的感知自適應取樣策略,然後將研究結果擴展到多維信號,以研究方向敏感性(如果有的話)。本書還討論了動覺刺激變化率對JND的影響、動覺力刺激可感知性的時間解析度、動覺感知對所執行任務的依賴性、動覺感知的序列效應,以及相應地對感知死區的影響。本書為從事觸覺和機器感知研究的研究人員、專業人士和研究生提供了寶貴的資源,並且也能支持專注於手術自動化的跨學科工作。