Asymmetric Kernel Smoothing: Theory and Applications in Economics and Finance (SpringerBriefs in Statistics)
暫譯: 非對稱核平滑:經濟學與金融學中的理論與應用 (SpringerBriefs in Statistics)

Masayuki Hirukawa

相關主題

商品描述

This is the first book to provide an accessible and comprehensive introduction to a newly developed smoothing technique using asymmetric kernel functions. Further, it discusses the statistical properties of estimators and test statistics using asymmetric kernels. The topics addressed include the bias-variance tradeoff, smoothing parameter choices, achieving rate improvements with bias reduction techniques, and estimation with weakly dependent data. Further, the large- and finite-sample properties of estimators and test statistics smoothed by asymmetric kernels are compared with those smoothed by symmetric kernels. Lastly, the book addresses the applications of asymmetric kernel estimation and testing to various forms of nonnegative economic and financial data.

Until recently, the most popularly chosen nonparametric methods used symmetric kernel functions to estimate probability density functions of symmetric distributions with unbounded support. Yet many types of economic and financial data are nonnegative and violate the presumed conditions of conventional methods. Examples include incomes, wages, short-term interest rates, and insurance claims. Such observations are often concentrated near the boundary and have long tails with sparse data. Smoothing with asymmetric kernel functions has increasingly gained attention, because the approach successfully addresses the issues arising from distributions that have natural boundaries at the origin and heavy positive skewness. Offering an overview of recently developed kernel methods, complemented by intuitive explanations and mathematical proofs, this book is highly recommended to all readers seeking an in-depth and up-to-date guide to nonparametric estimation methods employing asymmetric kernel smoothing.

商品描述(中文翻譯)

這是第一本提供可讀性高且全面介紹新開發的使用非對稱核函數的平滑技術的書籍。此外,本書還討論了使用非對稱核的估計量和檢驗統計量的統計性質。所涉及的主題包括偏差-方差權衡、平滑參數選擇、通過偏差減少技術實現速率改進,以及在弱依賴數據下的估計。此外,使用非對稱核平滑的估計量和檢驗統計量的大樣本和有限樣本性質與使用對稱核平滑的情況進行比較。最後,本書探討了非對稱核估計和檢驗在各種非負經濟和金融數據中的應用。

直到最近,最常選擇的非參數方法使用對稱核函數來估計具有無界支持的對稱分佈的概率密度函數。然而,許多類型的經濟和金融數據是非負的,並且違反了傳統方法的假設條件。例子包括收入、工資、短期利率和保險索賠。這些觀察通常集中在邊界附近,並且具有長尾和稀疏數據。使用非對稱核函數進行平滑越來越受到關注,因為這種方法成功地解決了來自於在原點有自然邊界和重正偏斜的分佈所產生的問題。本書提供了最近開發的核方法的概述,並輔以直觀的解釋和數學證明,強烈推薦給所有尋求深入且最新的非參數估計方法指南的讀者,特別是使用非對稱核平滑的技術。