Robust Hand Gesture Recognition for Robotic Hand Control
暫譯: 穩健的手勢識別技術於機器手控制
Ankit Chaudhary
- 出版商: Springer
- 出版日期: 2017-06-15
- 售價: $4,160
- 貴賓價: 9.5 折 $3,952
- 語言: 英文
- 頁數: 96
- 裝訂: Hardcover
- ISBN: 9811047979
- ISBN-13: 9789811047978
-
相關分類:
機器人製作 Robots
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping of the segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results.
An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers’ angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems.
商品描述(中文翻譯)
本書專注於光照不變的裸手手勢識別,並且對手勢類型沒有任何限制。觀察和結果已確認這項研究工作可以用來通過手勢遠程控制機械手。這裡開發的系統也能夠在不同的光照條件下識別手勢。預處理是通過開發一種影像裁剪算法來執行的,該算法確保只有感興趣的區域被包含在分割圖像中。分割圖像與必須安裝在識別系統中的預定義手勢集進行比較。這些圖像被存儲並從中提取特徵向量。這些特徵向量隨後使用方向直方圖呈現,該直方圖以頻率的形式提供邊緣的視圖。因此,如果在不同的光照強度下顯示相同的手勢,兩次重複將映射到存儲數據中的相同手勢。分割圖像的方向直方圖的映射首先使用歐幾里得距離方法進行。其次,對於相同的手勢,訓練監督式神經網絡以產生更好的識別結果。
本書還提出了一種使用動態手勢控制電機機械手的方法,並使用機器人模擬器進行演示。這種機械手在商業、軍事或緊急操作中有應用,這些情況下人類生命無法冒險。對於這些應用,需要一個人工機械手來執行實時操作。這個機械手應能夠以與人類手相同的方式移動手指。為此,使用網路攝影機和KINECT獲取手部幾何參數。這兩種方法中的參數檢測都是方向不變的。一旦獲得手部參數,通過進行幾何分析來獲取手指的角度信息。還實施了一個人工神經網絡來計算這些角度。這兩種方法可以僅用一隻手,無論是右手還是左手。還開發了一種適用於同時使用雙手的單獨方法,並計算手指角度。本書的內容將對從事機械臂/手系統研究的研究人員和專業工程師有用。