揭秘深度強化學習 人工智能機器學習技術叢書 揭秘深度强化学习 人工智能机器学习技术丛书
彭偉
- 出版商: 中國水利水電出版社
- 出版日期: 2018-05-01
- 定價: $539
- 售價: 7.9 折 $426
- 語言: 簡體中文
- 頁數: 360
- 裝訂: 平裝
- ISBN: 7517062387
- ISBN-13: 9787517062387
-
相關分類:
Reinforcement、Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$648$616 -
$301推薦系統 (Recommender Systems: An Introduction)
-
$352多智能體機器學習 : 強化學習方法 (Multi-Agent Machine Learning : A Reinforcement Approach)
-
$580$458 -
$474$450 -
$356機器學習:實用技術指南
-
$408強化學習精要:核心算法與 TensorFlow 實現
-
$403Web 安全之強化學習與 GAN
-
$210$200 -
$580$493 -
$607強化學習
-
$305人工智能入門與實戰 使用Raspberry Pi和Python演練
-
$680$578 -
$352生成對抗網絡入門指南 (Generative adversarial Networks)
-
$580$493 -
$454強化學習實戰:強化學習在阿裡的技術演進和業務創新 匯集了阿裡巴巴一線算法工程師在強化學習應用方面的經驗和心得。
-
$414$393 -
$505精通 CSS 高級 Web 標準解決方案, 3/e
-
$505深度強化學習原理與實踐
-
$1,008$958 -
$556電腦視覺與深度學習實戰:以 MATLAB、Python 為工具
-
$280機器學習、深度學習與強化學習
-
$352強化學習
-
$230TensorFlow 強化學習快速入門指南使用 Python 動手搭建自學習的智能體 (Tensorflow Reinforcement Learning Quick Start Guide)
-
$474$450
相關主題
商品描述
深度強化學習(Deep Reinforcement Learning,DRL)是深度學習算法和強化學習算法的巧妙結合,它是一種新興的通用人工智能算法技術,也是機器學習的前沿技術,DRL 算法潛力無限,AlphaGo是目前該算法*成功的使用案例。DRL 算法以馬爾科夫決策過程為基礎,是在深度學習強大的線性函數的擬合能力下構成的一種增強算法。深度強化學習算法主要括基於動態規劃(DP)的算法以及基於策略優化的算法,本書的目的就是要把這兩種主要的算法(及設計技巧)講解清楚,使算法研究人員能夠熟練地掌握。
《揭秘深度強化學習人工智能機器學習技術叢書》共章,首先以AlphaGo 在圍棋大戰的事蹟開始,引起對人工智能發展和現狀的介紹,進而介紹深度強化學習的基本知識。然後分別介紹了強化學習(重點介紹蒙特卡洛算法和時序差分算法)和深度學習的基礎知識、功能神經網絡層、卷積神經網絡(N)、循環神經網絡(RNN),以及深度強化學習的理論基礎和當前主流的算法框架。*後介紹了深度強化學習在不同領域的幾個應用實例。引例、基礎知識和實例相結合,方便讀者理解和學習。
《揭秘深度強化學習人工智能機器學習技術叢書》內容豐富,講解全面、語言描述通俗易懂,是深度強化學習算法入門的*選擇。本書適合計算機專業本科相關學生、人工智能領域的研究人員以及所有對機器學習和人工智能算法感興趣的人員。