阿爾法零對最優模型預測自適應控制的啟示
[美]德梅萃·P. 博塞克斯(Dimitri P. Bertsekas)
- 出版商: 清華大學
- 出版日期: 2025-04-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- ISBN: 7302684715
- ISBN-13: 9787302684718
-
相關分類:
Machine Learning
下單後立即進貨 (約4週~6週)
商品描述
目錄大綱
Contents
1. AlphaZero, Off-Line Training, and On-Line Play
1.1. Off-Line Training and Policy Iteration P. 3
1.2. On-Line Play and Approximation in Value Space -
Truncated Rollout p. 6
1.3. The Lessons of AlphaZero p. 8
1.4. A New Conceptual Framework for Reinforcement Learning p. 11
1.5. Notes and Sources p. 14
2. Deterministic and Stochastic Dynamic Programming
2.1. Optimal Control Over an Infinite Horizon p. 20
2.2. Approximation in Value Space p. 25
2.3. Notes and Sources p. 30
3. An Abstract View of Reinforcement Learning
3.1. Bellman Operators p. 32
3.2. Approximation in Value Space and Newton's Method p. 39
3.3. Region of Stability p. 46
3.4. Policy Iteration, Rollout, and Newton's Method p. 50
3.5. How Sensitive is On-Line Play to the Off-Line
Training Process? p. 58
3.6. Why Not Just Train a Policy Network and Use it Without
On-Line Play? p. 60
3.7. Multiagent Problems and Multiagent Rollout p. 61
3.8. On-Line Simplified Policy Iteration p. 66
3.9. Exceptional Cases p. 72
3.10. Notes and Sources p. 79
4. The Linear Quadratic Case - Illustrations
4.1. Optimal Solution p. 82
4.2. Cost Functions of Stable Linear Policies p. 83
4.3. Value Iteration p. 86
vii
viii Contents
4.4. One-Step and Multistep Lookahead - Newton Step
Interpretations p. 86
4.5. Sensitivity Issues p. 91
4.6. Rollout and Policy Iteration p. 94
4.7. Truncated Rollout - Length of Lookahead Issues . . ? p. 97
4.8. Exceptional Behavior in Linear Quadratic Problems . ? p. 99
4.9. Notes and Sources p. 100
5. Adaptive and Model Predictive Control
5.1. Systems with Unknown Parameters - Robust and
PID Control p. 102
5.2. Approximation in Value Space, Rollout, and Adaptive
Control p. 105
5.3. Approximation in Value Space, Rollout, and Model
Predictive Control p. 109
5.4. Terminal Cost Approximation - Stability Issues . . . p. 112
5.5. Notes and Sources p. 118
6. Finite Horizon Deterministic Problems - Discrete
Optimization
6.1. Deterministic Discrete Spaces Finite Horizon Problems. p. 120
6.2. General Discrete Optimization Problems p. 125
6.3. Approximation in Value Space p. 128
6.4. Rollout Algorithms for Discrete Optimization . . . p. 132
6.5. Rollout and Approximation in Value Space with Multistep
Lookahead p. 149
6.5.1. Simplified Multistep Rollout - Double Rollout . . p. 150
6.5.2. Incremental Rollout for Multistep Approximation in
Value Space p. 153
6.6. Constrained Forms of Rollout Algorithms p. 159
6.7. Adaptive Control by Rollout with a POMDP Formulation p. 173
6.8. Rollout for Minimax Control p. 182
6.9. Small Stage Costs and Long Horizon - Continuous-Time
Rollout p. 190
6.10. Epilogue p. 197
Appendix A: Newton's Method and Error Bounds
A.1. Newton's Method for Differentiable Fixed
Point Problems p. 202
A.2. Newton's Method Without Differentiability of the
Hellman Operator p. 207
Contents ix
A.3. Local and Global Error Bounds for Approximation in
Value Space p. 210
A.4. Local and Global Error Bounds for Approximate
Policy Iteration p. 212
References p. 217