Advanced Quantum Photonics Memory(現代光量子存儲)
徐端頤
- 出版商: 清華大學
- 出版日期: 2024-10-01
- 定價: $1,740
- 售價: 8.5 折 $1,479
- 語言: 簡體中文
- ISBN: 7302673926
- ISBN-13: 9787302673927
-
相關分類:
光電子學 Photonics、量子 Quantum
下單後立即進貨 (約4週~6週)
相關主題
商品描述
目錄大綱
Contents
Chapter 1The latest development in photonic memory
1.1New developments in photonics
1.2Other big data storage technology
1.3Photonic quantum for memory
1.4Controllabledipole quantum memory
1.5MaxwellBloch equations
1.6Ramantype optical quantum memory
1.7Precision of spinechobased quantum memories
1.8Integrated photonics for memory
1.9Photonic integration solid state memory
1.10Other new quantum memory technologies
1.10.1Ultraviolet photonic storage
1.10.2Plasmonic optical storage
1.10.3Xray storage
1.10.4Nanoprobe and molecular polymer storage
1.10.5Electronic quantum holography
1.10.6Compositive application of the different principles
Chapter 2Fundamentals of quantum information
2.1Introduction
2.1.1Quantum computing (QC) roadmap
2.1.2New quantum computation roadmap
2.2Basic concepts
2.2.1Quatum information
2.2.2Targets of quantum information research
2.2.3Experiments
2.2.4Primary concepts
2.2.5Separability criteria and positive maps
2.3Basic concepts
2.3.1Maximally entangled states
2.3.2Channels
2.3.3Observables and preparations
2.3.4Quantum mechanics in phase space
2.4Microaperture laser for photonic memory
2.4.1Teleportation and dense coding
2.4.2Entanglement enhanced teleportation
2.4.3Dense coding
2.4.4Estimating and copying
2.4.5Distillation of entanglement
2.4.6Quantum error correction
2.4.7Quantum computing
2.4.8Quantum cryptography
2.5Entanglement measures
2.5.1General properties and definitions
2.5.2Two qubits
2.5.3Entanglement measures under symmetry
2.6Channel capacity
2.6.1The general case
2.6.2The classical capacity
2.6.3The quantum capacity
2.7Multiple inputs
2.8Quantum probability
2.8.1Review of quantum probability
2.8.2Why classical probability does not suffice
2.8.3Towards a mathematical model
2.8.4Quantum probability
2.8.5Operations on probability spaces
2.8.6Examples of quantum operations
2.8.7Quantum impossibilities
2.8.8Quantum novelties
2.9Dense quantum coding and quantum finite automata
2.9.1Holevos theorem and the entropy coalescence lemma
2.9.2The asymptotic of random access codes
2.9.3Oneway quantum finite automata
2.9.4Quantum advantage for dense coding
2.10Quantum data compression
2.10.1Quantum data compression: an example
2.10.2Schumacher encoding in general
2.10.3Mixedstate coding: Holevo information
2.10.4Accessible information
2.11Photonic technologies for quantum information
2.11.1Singlephoton sources
2.11.2Entangledphoton sources
2.11.3Singlephoton detectors
2.11.4Mathematical background
Chapter 3Multidimension Photonic Memory
3.1Mechanism of photochromic multidimension memory
3.1.1Photochromic reaction
3.1.2Multiwavelength photochromic storage process
3.1.3Model of data writing
3.2Experiments for multiwavelength and multilevel storage
3.2.1The influence of initial reflectivity to writing speed
3.2.2The influence of the maximum reflectivity to writing process
3.2.3Written time constant k
3.2.4Reflectivity of the reflective layer
3.2.5Time constants k
3.3Crosstalk in multiwavelength and multilevel storage
3.3.1Emerging of crosstalk
3.3.2The calculations of crosstalk
3.4Nondestructive readout
3.5Multiwavelength and multilevel storage system
3.5.1System architecture
3.5.2Optical channel characteristics and crosstalk analysis
3.6Modulation coding and error correction
3.6.1Modulation coding
3.6.2The error correction coding
3.6.3Multiwavelength and multilevel storage error code correction
3.6.4ReedSolomon errorcorrecting code
3.7Application of multiwavelength and multilevel storage
3.7.1Multilevel bluray disc drive
3.7.2Threewavelength eightlevel optical storage
3.7.3Multilevel photochromic medium
3.7.4Multilevel amplitude modulation
3.7.5Rate 7/8 runlength and level modulation for multilevel ROM
3.7.67/8 runlength and level modulation code
3.7.7Level modulation process
3.7.8Multilevel amplitudemodulation
3.7.9Systems integration
3.7.10Multilevel runlengthlimited (MLRLL) modulation
3.7.11Three wavelength and multilevel storage with mask
Chapter 4Photonic superresolution memory
4.1Overview
4.1.1Nearfield interaction and microscopy
4.1.2Nearfield optics
4.1.3Theoretical modeling of nearfield nanoscopic interactions
4.1.4Theoretical modeling of nearfield nanoscopic interactions
4.2Principles of nearfield optics
4.2.1Base theoretical works
4.2.2Perturbative or selfconsistent approach
4.2.3Theories based on matching boundary conditions
4.2.4Expansion in plane waves: grating and diffraction theory
4.2.5Perturbative diffraction theory
4.2.6Scattering theory
4.2.7Nearfield distributions
4.2.8Interaction and coupling to the farfield
4.3Optical solid immersion lens (OSIL)
4.3.1Parameters of nearfield optical disc systems
4.3.2Solid immersion lens designs
4.3.3Lens design with NA=1.9 for first surface recording
4.3.4Air gap dependence of the spot size for practical optical discs
4.4Superresolution nearfield structure (SRENS)
4.4.1Numerical model for super resolution effect
4.4.2Numerical approach
4.4.3Correct Fourier transform
4.4.4Simulation of the readout signal
4.4.5SRENS with ferroelectrics of chalcogenides
4.5Microaperture laser for NFO data storage
4.5.1Model and numerical methods
4.5.2Numericalresults
4.6Plasmonic nearfield recording (PNFR)
4.6.1Holographic lithography (HL) application
4.6.2Plasmonic nanostructures
4.6.3Plasmonic storage medium
4.6.4Nanogap control with optical antennas (Metallic nanoantennas)
4.6.5Plasmonic nanostructures for optical storage
4.6.6The results of FDTD simulations
4.7Metamaterial immersion lenses (MIL)
4.7.1Theory of MIL
4.7.2Simulations and analysis
4.7.3Application in the future
4.8Dynamic pressure air bearing nanogap control
4.8.1Nanogap flight system design theory model
4.8.2Lubrication model on surface interface of optical head/disc
4.8.3Solving discrete modified Reynolds equations
4.8.4Stream function on the underside of microflying head
4.8.5Dynamic characteristics of micron flight systems
4.8.6Nearfield optical dynamic flight experiment system
4.9Micro positive pressure nanogap flying head design
4.9.1Positive pressure microflying head design
4.9.2The negative pressure microflying head design
4.9.3Reform design of the slider from magnetic storage
4.9.4Comparative analysis of the microflying head design
4.9.5Adaptive suspension design
4.10Nanogap flight experimental and testing
4.10.1Main special testing equipment
4.10.2The nearfield spacing testing
4.10.3Flight system resonance characteristics testing
4.10.4Flying start/stop characteristics testing
Chapter 5Nanophotonic memory
5.1Nanophotonics and quantum memories
5.1.1Nanophotonics
5.1.2Nanolithography
5.1.3Optical nanoscopy for data storage
5.1.4Rewritable data storage
5.1.5Paint it black
5.1.6Slow light and memory
5.1.7Photonecho quantum memory
5.2Analysis of a quantum memory for photons
5.2.1Principles
5.2.2General solution
5.3Atomic distribution and memory efficiency
5.3.1Memory efficiency versus storage duration
5.3.2Analysis of results
5.3.3Control and releasing of photon
5.3.4Energy control
5.3.5Methods
5.4Photonic quantum controlle memory function
5.4.1Electron spins in quantum
5.4.2Enhancement of excitonic spontaneous emission
5.4.3Planar microcavities
5.4.4Clock signals
5.4.5Quantum memory and decoherence time
5.4.6T1 and T2 for electron spins
5.4.7T1 and T2 for nuclear spins
5.5Singlephoton emission and distribution of entangled quantum states
5.5.1Singlephoton interferometer with quantum phase modulators
5.5.2Generation of singlephoton pulses
5.6Singlephoton wavepackets and memory in atomic vapor
5.6.1Electronics and photonics integration
5.6.2Wavelength switched optical networks
5.6.3Silicon optical phased array
5.6.4Singlephoton wavepackets to atomic memory
5.6.5Solid state lightmatter interface at photon
5.6.6Photon memory in atomic vapor
5.7Photon storage in atomic media
5.7.1Solidstate memory at the single photon level
5.7.2A singlephoton transistor using nanoscale surface plasmons
5.7.3Photon correlations
5.7.4Multiphoton dynamics
5.8Optical dense atomic memory medium
5.8.1Λtype optical dense atomic media
5.8.2Optimal retrieval
5.8.3Adiabatic retrieval and storage
5.8.4Shaping retrieval into an arbitrary mode
5.9Effects of metastable state nondegeneracy
5.9.1Optimal control using gradient ascent
5.9.2Free space model
5.9.3Adjoint equations of motion in the cavity model
5.10Control field optimization for adiabatic storage
5.11Analysis of photon number in quantum memory
5.11.1Quantum memory for light
5.11.2Methods
5.12Quantum solid memory
5.12.1Atomic memory
5.12.2Stable solidstate source of single photons
5.12.3Stopped times of light storage
5.13Photon solidstate quantum memories
5.13.1Memory operation and properties
5.13.2Analytical model of secondorder interference in coincidence
measurements
5.13.3Simplied model for HOM visibility
5.13.4Forbidden regions
5.13.5Cooperative effects for photons and electrons
5.13.6Nanoscale optical interactions
5.13.7Lateral nanoscopic localization
5.13.8Quantum confinement effects
5.13.9New cooperative transitions
5.13.10Nanoscale electronic energy transfer
5.13.11Quantum dots
References