線性代數(第6版) Introduction to Linear Algebra, Sixth Edition
[美]Gilbert Strang (吉爾伯特·斯特朗)
- 出版商: 清華大學
- 出版日期: 2024-07-01
- 售價: $648
- 貴賓價: 9.5 折 $616
- 語言: 簡體中文
- ISBN: 7302668078
- ISBN-13: 9787302668077
-
相關分類:
線性代數 Linear-algebra
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,410$1,340 -
$352DevOps 實踐 (Practical DevOps)
-
$199輕量級 Django
-
$400$316 -
$281修改軟件的藝術 : 構建易維護代碼的 9條最佳實踐 (Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of Your Software)
-
$297Python 新手學 Django 2.0 架站的 16堂課, 2/e
-
$505Kotlin 編程權威指南
-
$520$411 -
$239Python Web 開發基礎教程 (Django版)(微課版)
-
$320$288 -
$654$621 -
$580$435 -
$1,074$1,020 -
$550$495
相關主題
商品描述
目錄大綱
Table of Contents
1 Vectors and Matrices 1
1.1 Vectors and Linear Combinations 2
1.2 Lengths and Angles from Dot Products 9
1.3 Matrices and Their Column Spaces 18
1.4 Matrix Multiplication AB and CR 27
2 Solving Linear Equations Ax = b 39
2.1 Elimination and Back Substitution 40
2.2 Elimination Matrices and Inverse Matrices 49
2.3 Matrix Computations and A = LU 57
2.4 Permutations and Transposes 64
2.5 Derivatives and Finite Difference Matrices 74
3 The Four Fundamental Subspaces 84
3.1 Vector Spaces and Subspaces 85
3.2 Computing the Nullspace by Elimination: A = CR 93
3.3 The Complete Solution to Ax = b 104
3.4 Independence, Basis, and Dimension 115
3.5 Dimensions of the Four Subspaces 129
4 Orthogonality 143
4.1 Orthogonality of Vectors and Subspaces 144
4.2 Projections onto Lines and Subspaces 151
4.3 Least Squares Approximations 163
4.4 Orthonormal Bases and Gram-Schmidt 176
4.5 The Pseudoinverse of a Matrix 190
5 Determinants 198
5.1 3 by 3 Determinants and Cofactors 199
5.2 Computing and Using Determinants 205
5.3 Areas and Volumes by Determinants 211
6 Eigenvalues and Eigenvectors 216
6.1 Introduction to Eigenvalues : Ax = λx 217
6.2 Diagonalizing a Matrix 232
6.3 Symmetric Positive De?nite Matrices 246
6.4 Complex Numbers and Vectors and Matrices 262
6.5 Solving Linear Differential Equations 270
vii
viii Table of Contents
7 The Singular Value Decomposition (SVD) 286
7.1 Singular Values and Singular Vectors 287
7.2 Image Processing by Linear Algebra 297
7.3 Principal Component Analysis (PCA by the SVD) 302
8 Linear Transformations 308
8.1 The Idea of a Linear Transformation 309
8.2 The Matrix of a Linear Transformation 318
8.3 The Search for a Good Basis 327
9 Linear Algebra in Optimization 335
9.1 Minimizing a Multivariable Function 336
9.2 Backpropagation and Stochastic Gradient Descent 346
9.3 Constraints, Lagrange Multipliers, Minimum Norms 355
9.4 Linear Programming, Game Theory, and Duality 364
10 Learning from Data 370
10.1 Piecewise Linear Learning Functions 372
10.2 Creating and Experimenting 381
10.3 Mean, Variance, and Covariance 386
Appendix 1 The Ranks of AB and A + B 400
Appendix 2 Matrix Factorizations 401
Appendix 3 Counting Parameters in the Basic Factorizations 403
Appendix 4 Codes and Algorithms for Numerical Linear Algebra 404
Appendix 5 The Jordan Form of a Square Matrix 405
Appendix 6 Tensors 406
Appendix 7 The Condition Number of a Matrix Problem 407
Appendix 8 Markov Matrices and Perron-Frobenius 408
Appendix 9 Elimination and Factorization 410
Appendix 10 Computer Graphics 414
Index of Equations 419
Index of Notations 422
Index 423