離散與混雜控制的代數理論(Algebraic Theory of Discrete and Hybrid Control)

王勇,薑正濤,代桂平

  • 出版商: 電子工業
  • 出版日期: 2023-12-01
  • 定價: $588
  • 售價: 8.5$500
  • 語言: 簡體中文
  • 頁數: 200
  • ISBN: 7121466937
  • ISBN-13: 9787121466939
  • 相關分類: 離散數學 Discrete-mathematics
  • 下單後立即進貨 (約4週~6週)

相關主題

商品描述

控制理論通常處理過程的動態行為,由微分方程來進行刻畫。隨著電腦控制的快速普及,出現了離散事件過程和混雜過程。離散事件過程可能是展現離散行為的最簡單的過程。在離散事件系統中,狀態是離散的,而且狀態的轉移僅僅是對離散事件的響應。在離散事件過程和計算過程之間存在微小的差異,即並行與並發,也就是說,對於多數的計算性質,如順序、不確定性、遞歸和抽象等,它們是相同的。混雜理論是系統理論和電腦科學的結合體。在系統理論中,系統行為通常由微分方程來刻畫,而在電腦科學中,系統行為通常由離散的原子動作及其之間的計算邏輯來刻畫。在本書中,我們在真並發進程代數中引入離散事件系統和混雜系統,介紹了離散事件過程的公理化、分佈式離散事件過程的公理化、混雜進程代數及其在神經網絡建模中的應用以及具有位置的混雜進程代數及其在分佈式/聯邦神經網絡建模中的應用等。

目錄大綱

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.3 Truly Concurrent Process Algebra - APTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Basic Algebra for True Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 APTC with Left Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Placeholder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Truly Concurrent Process Algebra with Localities . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Operational Semantics with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 BATC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 APTC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Recursion with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.5 Abstraction with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Chapter 3 An Axiomatization of Discrete Event Processes. . . . . . . . . . . . . . . . . . . . . .46
3.1 Basic Algebra for True Concurrency - BATC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.1 Axiom System of BATC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Properties of BATC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Structured Operational Semantics of BATC . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Algebra for Parallelism in True Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Parallelism as a Fundamental Computational Pattern . . . . . . . . . . . . . . . . . . 53
3.2.2 Axiom System of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
3.2.3 Properties of Parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
3.2.4 Structured Operational Semantics of Parallelism . . . . . . . . . . . . . . . . . . . . . . .58
3.2.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.1 Guarded Recursive Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
3.3.2 Recursive Definition and Specification Principles. . . . . . . . . . . . . . . . . . . . . . .69
3.3.3 Approximation Induction Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Silent Step and Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1 Guarded Linear Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Algebraic Laws for the Silent Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
3.4.3 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter 4 An Axiomatization of Distributed Discrete Event Processes . . . . . . . . . 87
4.1 BATC with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.1 Axiom System of BATC with Static Localities. . . . . . . . . . . . . . . . . . . . . . . . .87
4.1.2 Properties of BATC with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.3 Structured Operational Semantics of BATC with Static Localities. . . . . . .89
4.2 APTC with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.1 Properties of Parallelism with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.2 Structured Operational Semantics of Parallelism with
Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Encapsulation with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Recursion with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.1 Guarded Recursive Specifications with Static Localities . . . . . . . . . . . . . . . 110
4.3.2 Recursive Definition and Specification Principles with
Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Approximation Induction Principle with Static Localities. . . . . . . . . . . . . .114
4.4 Silent Step and Abstraction with Static Localities . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 Guarded Linear Recursion with Static Localities. . . . . . . . . . . . . . . . . . . . . .119
4.4.2 Algebraic Laws for the Silent Step with Static Localities . . . . . . . . . . . . . . 120
4.4.3 Abstraction with Static Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter 5 Hybrid Process Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
5.1 Truly Concurrent Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
5.2 Hybrid BATC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.1 Axiom System of Hybrid BATC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
5.2.2 Properties of Hybrid BATC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
5.2.3 Structured Operational Semantics of Hybrid BATC. . . . . . . . . . . . . . . . . . .136
5.3 Hybrid APTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3.1 Properties of Parallelism of Hybrid APTC . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.2 Structured Operational Semantics of Parallelism of Hybrid APTC . . . . . 144
5.3.3 Encapsulation of Hybrid APTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4 Recursion of Hybrid APTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.1 Guarded Recursive Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.2 Recursive Definition and Specification Principles of Hybrid APTC . . . . . 150
5.4.3 Approximation Induction Principle of Hybrid APTC. . . . . . . . . . . . . . . . . .150
5.5 Silent Step and Abstraction of Hybrid APTC . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5.1 Guarded Linear Recursion of Hybrid APTC. . . . . . . . . . . . . . . . . . . . . . . . . .152
5.5.2 Algebraic Laws for the Silent Step of Hybrid APTC . . . . . . . . . . . . . . . . . . 153
5.5.3 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6 Application of Hybrid APTC in Modelling Neural Networks . . . . . . . . . . . . 155
5.6.1 Modelling of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.6.2 Modelling of Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Chapter 6 Hybrid Process Algebra with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1 Locality Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Hybrid BATC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2.1 Axiom System of Hybrid BATC with Localities . . . . . . . . . . . . . . . . . . . . . . 165
6.2.2 Properties of Hybrid BATC With Localities . . . . . . . . . . . . . . . . . . . . . . . . . .166
6.2.3 Structured Operational Semantics of Hybrid BATC with Localities . . . . 168
6.3 Hybrid APTC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3.1 Properties of Parallelism of Hybrid APTC with Localities . . . . . . . . . . . . . 175
6.3.2 Structured Operational Semantics of Parallelism of Hybrid APTC
with Localities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
6.3.3 Encapsulation of Hybrid APTC with Localities. . . . . . . . . . . . . . . . . . . . . . .179
6.4 Recursion of Hybrid APTC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.4.1 Guarded Recursive Specifications of Hybrid APTC with Localities . . . . . 183
6.4.2 Recursive Definition and Specification Principles of Hybrid APTC
with Localities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
6.4.3 Approximation Induction Principle of Hybrid APTC with Localities . . . 185
6.5 Silent Step and Abstraction of Hybrid APTC with Localities . . . . . . . . . . . 186
6.5.1 Guarded Linear Recursion of Hybrid APTC with Localities . . . . . . . . . . . 187
6.5.2 Algebraic Laws for the Silent Step of Hybrid APTC with Localities . . . . 188
6.5.3 Abstraction of Hybrid APTC with Localities . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.6 Application of Hybrid APTC with Localities in Modelling
Distributed/Federated Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.6.1 Modelling of Distributed/Federated Neurons . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.6.2 Modelling of Distributed/Federated Neural Networks . . . . . . . . . . . . . . . . . 192
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194