買這商品的人也買了...
-
$690$538 -
$454AI 繪畫教程 : Stable Diffusion 技巧與應用
-
$479$455 -
$509$479 -
$474$450 -
$714$678 -
$654$621 -
$254AI寫實人物繪畫關鍵詞圖鑒 Stable Diffusion版
-
$650$507 -
$468$445 -
$359$341 -
$556AI繪畫大師:Stable Diffusion快速入門與實戰技巧
-
$594$564 -
$654$621 -
$528$502 -
$780$616 -
$479$455 -
$479$455 -
$528$502 -
$458AIGC智能繪畫指令與範例大全
-
$454解密AI繪畫與修圖:Stable Diffusion+Photoshop
-
$594$564 -
$539$512 -
$479$455 -
$359$341
相關主題
商品描述
本書以實際操作為導向,詳細講解基於Stable Diffusion進行AI繪畫的完整學習路線,包括繪畫技巧、圖片生成、提示詞編寫、ControlNet插件、模型訓練等,同時搭配了豐富的實際操作案例,在附錄中還提供了常用提示詞中英文對照表,涉及畫質、環境、風格、人物、發型、表情、表情符號、眼睛、服裝、褲襪與腿飾、鞋子、其他裝飾和動作。整本書內容全面、詳盡且深入淺出,實用性很強。本書總計8章。第1章為Stable Diffusion AI繪畫入門,帶領讀者認識AI繪畫,介紹StableDiffusion界面並詳解模型類型。第2章重點講解如何使用Stable Diffusion生成AI圖片,涉及文生圖、圖生圖及局部重繪。第3、4、5、6章講解常用模型(如Embedding、Hypernetwork、LoRA模型)及常用插件(如Dreambooth插件)的訓練和使用方式,掌握這些內容後,可以做更多的個性化定製。第7章重點講解ControlNet插件的使用方式,涉及姿態檢測、線稿提取與上色、法線貼圖、深度檢測、毛邊檢測、線條檢測、曝光度檢測、語義分割、畫風遷移、邊緣檢測及ControlNet插件的高級應用,掌握這些內容後,可以更精準地操作圖片。第8章通過幾個商業設計案例(如傢具效果圖、AI繪畫與插圖、AI寵物、原創IP角色、自媒體運營)為讀者提供新的設計思路和工作方法。本書讀者無須具備任何軟件編程基礎,只需熟練操作電腦即可。本書適合設計及美術相關從業者、美術生、電腦技術愛好者,以及對AI繪畫感興趣的讀者閱讀。
目錄大綱
--第1 章 Stable Diffusion AI 繪畫入門 001--
1.1 認識AI 繪畫 002
1.1.1 AI 的應用領域 002
1.1.2 AI 繪畫簡介 003
1.1.3 為什麽要學習AI 繪畫 008
1.2 Stable Diffusion 界面介紹 009
1.2.1 文生圖界面 009
1.2.2 圖生圖界面 010
1.2.3 訓練界面 010
1.2.4 設置界面 011
1.2.5 擴展界面 012
1.3 模型類型詳解 013
1.3.1 底模型(Base Model) 014
1.3.2 Embedding 模型 014
1.3.3 Hypernetwork 模型 014
1.3.4 LoRA 模型 015
1.4 本章小結 016
--第2章 使用Stable Diffusion 生成圖片 017--
2.1 文生圖 018
2.1.1 快速生成我們的第一張AI 圖片 018
2.1.2 編寫正面提示詞 018
2.1.3 編寫負面提示詞 020
2.1.4 提示詞的語法規則 021
2.1.5 設置參數 022
2.1.6 案例1 :國風少女 024
2.1.7 案例2 :風景壁紙 026
2.2 圖生圖 027
2.2.1 上傳底圖 027
2.2.2 設置參數 028
2.2.3 案例:普通照片風格轉換 029
2.3 局部重繪——畫筆工具的使用 031
2.4 本章小結 033
--第3章 Embedding 模型訓練——角色訓練 037--
3.1 什麽是AI 訓練 038
3.2 Embedding 模型訓練概述 039
3.3 基礎設置 040
3.4 創建Embedding 模型 042
3.5 準備數據集 042
3.5.1 對數據集的基本要求 042
3.5.2 圖像預處理 043
3.6 開始訓練 046
3.6.1 訓練參數詳解 046
3.6.2 模型測試 048
3.7 本章小結 048
--第4章 Hypernetwork 模型訓練——畫風 049--
4.1 Hypernetwork 模型訓練概述 050
4.2 基礎設置 050
4.3 創建Hypernetwork 模型 053
4.4 數據集處理規範 053
4.4.1 對數據集的基本要求 054
4.4.2 圖像預處理 054
4.5 開始訓練 057
4.5.1 設置訓練參數 057
4.5.2 模型測試 058
4.6 本章小結 058
--第5章 使用Dreambooth 插件訓練大模型 059--
5.1 準備工作 060
5.2 開始訓練 060
5.2.1 創建模型 060
5.2.2 參數填寫 062
5.3 本章小結 072
--第6章 LoRA 模型訓練——微調訓練 073--
6.1 準備工作 074
6.2 對數據集的基本要求 078
6.3 圖像預處理 079
6.4 數據標註 084
6.5 訓練參數詳解 088
6.6 模型測試 093
6.6.1 擬合度 100
6.6.2 模型的分層控制 101
6.6.3 分層調試 102
6.6.4 模型融合 105
6.7 本章小結 107
--第7章 ControlNet 插件的使用方式 109--
7.1 姿態檢測(openpose) 111
7.2 線稿提取與上色(lineart) 114
7.3 法線貼圖(normal_bae) 116
7.4 深度檢測(depth_midas) 119
7.5 毛邊檢測(softedge_hed) 120
7.6 線條檢測(M-LSD) 122
7.7 曝光度檢測(scribble) 125
7.8 語義分割(Segmentation) 127
7.9 畫風遷移(clip_vision) 129
7.10 邊緣檢測(Canny) 131
7.11 ControlNet 插件的高級應用 132
7.11.1 更精準的3D 場景重構 133
7.11.2 更精準的人物風格 135
7.11.3 更精準的光源控制 138
7.11.4 更精準的三視圖 141
7.12 本章小結 142
--第8章 項目實戰:將AI 繪畫融入商業設計 143--
8.1 傢具效果圖 145
8.1.1 需求分析 145
8.1.2 定製設計方案 146
8.2 AI 插畫與插圖 153
8.2.1 需求分析 153
8.2.2 定製設計方案 154
8.2.3 應用場景 157
8.3 AI 寵物 161
8.3.1 需求分析 161
8.3.2 定製設計方案 162
8.3.3 包裝與設計 167
8.4 原創IP 角色 167
8.4.1 需求分析 168
8.4.2 定製設計方案 169
8.4.3 應用場景 173
8.5 自媒體運營 175
8.5.1 需求分析 175
8.5.2 定製設計方案 177
8.5.3 案例一 177
8.5.4 案例二 179
8.5.5 案例三 182
8.6 本章小結 190
--附錄A 常用提示詞中英文對照表 193--
A.1 畫質 194
A.2 環境 194
A.3 風格 195
A.4 人物 196
A.5 發型 197
A.6 表情 198
A.7 表情符號 199
A.8 眼睛 200
A.9 服裝 201
A.10 褲襪與腿飾 202
A.11 鞋子 203
A.12 其他裝飾 204
A.13 動作 205