時間序列預測 : 基於機器學習和 Python 實現 (Machine Learning for Time Series Forecasting with Python)
Francesca Lazzeri 譯 郝小可
- 出版商: 機械工業
- 出版日期: 2022-02-01
- 售價: $534
- 貴賓價: 9.5 折 $507
- 語言: 簡體中文
- 頁數: 204
- 裝訂: 平裝
- ISBN: 7111697464
- ISBN-13: 9787111697466
-
相關分類:
Machine Learning
- 此書翻譯自: Machine Learning for Time Series Forecasting with Python (Paperback)
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$590$460 -
$250Python 數據挖掘方法及應用
-
$301特徵工程入門與實踐 (Feature Engineering Made Easy)
-
$750$638 -
$594$564 -
$588$559 -
$450$338 -
$414$393 -
$811統計學習要素:機器學習中的數據挖掘、推斷與預測, 2/e (The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e)
-
$599$509 -
$680$578 -
$828$787 -
$980$774 -
$890$703 -
$599$569 -
$620$490 -
$408$388 -
$359$341 -
$458特徵工程的藝術:通用技巧與實用案例
-
$880$695 -
$419$398 -
$1,200$948 -
$505多模態深度學習技術基礎
-
$750$593 -
$600$570
相關主題
商品描述
本書基於Python這一處理數據功能強大的高級編程語言,
在實踐中展示瞭如何將這些模型應用於真實世界的數據科學場景。
Python提供了一系列用於時間序列數據分析的庫,
可以針對不同的預測解決方案進行通用化的代碼部署。
目錄大綱
譯者序
前言
致謝
關於作者
關於技術審閱人
第1章 時間序列預測概述1
1.1 時間序列預測的機器學習方法2
1.2 時間序列預測的監督學習12
1.3 基於Python的時間序列預測19
1.4 時間序列預測的實驗設置22
1.5 總結24
第2章 如何在雲上設計一個端到端的時間序列預測解決方案25
2.1 時間序列預測模板25
2.1.1 業務理解和性能度量27
2.1.2 數據攝取30
2.1.3 數據探索與理解33
2.1.4 數據預處理和特徵工程34
2.1.5 模型構建和選擇36
2.2 需求預測建模技術概述37
2.2.1 模型評估40
2.2.2 模型部署41
2.2.3 預測解決方案的接受程度47
2.3 用例:需求預測47
2.4 總結51
第3章 時間序列數據準備53
3.1 用於時間序列數據的Python庫53
3.1.1 時間序列的通用數據準備工作56
3.1.2 時間戳與週期58
3.1.3 轉換為時間戳61
3.1.4 提供格式參數62
3.1.5 索引63
3.1.6 時間/日期組件69
3.1.7 頻率轉換70
3.2 探索與理解時間序列72
3.2.1 如何開始時間序列數據分析72
3.2.2 時間序列中缺失值的數據清理77
3.2.3 歸一化和標準化時間序列數據80
3.3 時間序列特徵工程83
3.3.1 日期時間特徵84
3.3.2 滯後特徵和窗口特徵85
3.3.3 滾動窗口統計信息90
3.3.4 擴展窗口統計信息92
3.4 總結93
第4章 時間序列預測的自回歸和自動方法94
4.1 自回歸95
4.2 移動平均112
4.3 自回歸移動平均113
4.4 差分自回歸移動平均114
4.5 自動化機器學習121
4.6 總結128
第5章 基於神經網絡的時間序列預測130
5.1 將深度學習用於時間序列預測的原因130
5.1.1 深度學習神經網絡能夠自動從原始數據中學習和提取特徵132
5.1.2 深度學習支持多個輸入和輸出133
5.1.3 循環神經網絡擅長從輸入數據中提取模式135
5.2 基於循環神經網絡的時間序列預測136
5.2.1 循環神經網絡137
5.2.2 長短期記憶139
5.2.3 門控循環單元140
5.2.4 如何為LSTM和GRU準備時間序列數據141
5.3 如何開髮用於時間序列預測的GRU和LSTM146
5.3.1 Keras147
5.3.2 TensorFlow148
5.3.3 單變量模型149
5.3.4 多變量模型153
5.4 總結157
第6章 時間序列預測的模型部署159
6.1 實驗設置和Python版的Azure機器學習SDK介紹 159
6.1.1 Workspace159
6.1.2 Experiment160
6.1.3 Run160
6.1.4 Model161
6.1.5 ComputeTarget、RunConfiguration和ScriptRunConfig162
6.1.6 Image和Webservice163
6.2 機器學習模型部署 164
6.3 時間序列預測的解決方案體系結構部署示例 168
6.3.1 訓練並部署ARIMA模型 170
6.3.2 配置工作空間 173
6.3.3 創建實驗 175
6.3.4 創建或連接計算集群 175
6.3.5 上傳數據到Azure 176
6.3.6 創建估算器 179
6.3.7 將工作提交到遠程集群180
6.3.8 註冊模型 180
6.3.9 部署模型180
6.3.10 定義輸入腳本和依賴項 182
6.3.11 自動生成模式 182
6.4 總結187
參考文獻189