TensorFlow2.0神經網絡實踐/智能係統與技術叢書
Paolo Galeone 閆龍川//白東霞//郭永和//李妍譯
- 出版商: 機械工業
- 出版日期: 2020-07-01
- 定價: $534
- 售價: 7.9 折 $422
- 語言: 簡體中文
- 頁數: 245
- 裝訂: 平裝
- ISBN: 7111659279
- ISBN-13: 9787111659273
-
相關分類:
TensorFlow
立即出貨
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
TensorFlow是流行的、使用廣泛的機器學習框架,它使得每個人都能輕鬆開發機器學習解決方案。
使用TensorFlow 2.0,你將研究一個改進後的框架結構,
它提供了大量的新特性,以提升開發者的工作效率和便於開發者使用。
本書通過聚焦於開發基於神經網絡的解決方案來介紹機器學習。
本書通過聚焦於開發基於神經網絡的解決方案來介紹機器學習。
本書從構建深度學習解決方案所需的概念和技術開始介紹,
之後將介紹如何創建分類器、構建目標檢測和語義分割神經網絡、訓練生成式模型,
以及使用TensorFlow 2.0的工具(如TensorFlow Datasets和TensorFlow Hub)加速開發過程。
學完本書之後,你將能夠使用TensorFlow 2.0開發任何機器學習問題的解決方案,
並能將它們部署到生產環境之中。
你將學到以下內容: ·掌握機器學習和神經網絡技術,解決有挑戰性的任務。
·學會使用TensorFlow 2.0的新特性加速開發。
·學會使用TensorFlow Datasets (tfds)和tf.data API建立高效的數據輸入流水線。
·學會使用TensorFlow Hub進行遷移學習和微調。
·能夠定義和訓練神經網絡,解決目標檢測和語義分割問題。
·能夠訓練生成式對抗網絡(GAN)生成圖像和數據分佈。
·學會使用SavedModel文件格式將模型或者通用的計算圖部署到生產環境中
作者簡介
Paolo Galeone
是一位具有豐富實踐經驗的計算機工程師。
獲得碩士學位後,他加入了意大利博洛尼亞大學的計算機視覺實驗室並擔任研究員,
在那裡他豐富了自己在計算機視覺和機器學習領域的知識。
目前,他領導著意大利ZURU科技公司的計算機視覺和機器學習實驗室。
2019年,谷歌授予他機器學習領域的谷歌開發技術專家(Google Developer Expert,GDE)稱號,
以此認可他的專業技能。
作為一名GDE,他通過寫博客、在會議上演講、參與開源項目以及回答Stack Overflow上面的問題,
分享了他對機器學習和TensorFlow框架的熱愛。
目錄大綱
目錄
譯者序
前言
作者簡介
審校者簡介
第一部分神經網絡基礎
第1章什麼是機器學習
1.1數據集的重要性
1.1.1 n維空間
1.1.2維度詛咒
1.2有監督學習
1.2.1距離和相似性—k-NN算法
1.2.2參數模型
1.2.3評估模型性能—度量指標
1.3無監督學習
1.4半監督學習
1.5總結
1.6練習題
第2章神經網絡與深度學習
2.1神經網絡
2.1.1生物神經元
2.1 .2人工神經元
2.1.3全連接層
2.1.4激活函數
2.1.5損失函數
2.1.6參數初始化
2.2優化
2.2.1梯度下降法
2.2.2梯度下降優化算法
2.2.3反向傳播和自動微分
2.3捲積神經網絡
2.3.1捲積運算符
2.3.2二維捲積
2.3.3捲間的二維捲積
2.3.4 1×1×D捲積
2.4正則化
2.4.1 dropout
2.4.2數據擴充
2.4.3早期停止
2.4.4批量歸一化
2.5總結
2.6練習題
第二部分TensorFlow基礎
第3章TensorFlow圖架構
3.1環境設置
3.1.1 TensorFlow 1.x的環境設置
……
第三部分神經網絡應用
