Tracking Faces in Grayscale Video Sequences with
暫譯: 使用灰階視頻序列進行人臉追蹤
Hajo Hoffmann
- 出版商: VDM Verlag
- 出版日期: 2008-05-09
- 售價: $2,150
- 貴賓價: 9.5 折 $2,043
- 語言: 英文
- 頁數: 104
- 裝訂: Paperback
- ISBN: 3836499320
- ISBN-13: 9783836499323
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,400$1,330 -
$990Android Apps with App Inventor: The Fast and Easy Way to Build Android Apps (Paperback)
-
$420$378 -
$520$442 -
$480$432 -
$403Unity AR 增強現實完全自學教程 (全彩)
-
$594$564 -
$449Adobe Audition 聲音後期處理實戰手冊, 2/e
-
$378中文版Adobe Audition CC 2020從入門到精通
-
$407統計學入門:文科生也能看得懂的統計學, 5/e
-
$620$490 -
$480$379 -
$540$486 -
$550$434 -
$600$474 -
$480$336 -
$3,468The R Book, 3/e (Hardcover)
-
$500$395 -
$580$493 -
$450$383 -
$980$774 -
$560$442 -
$780$546 -
$680$537 -
$680$537
相關主題
商品描述
This diploma thesis introduces a novel, color-independent feature for image analysis. Furthermore, it describes an application prototype using this feature for face-tracking and its extensive evaluation.The main achievement of this thesis is the development of an alternative, simple and robust basis for face-tracking solutions and other image processing purposes. This novel method allows the encoding of local, structural features that are recognizeable in gray-scale images as so-called Binary Direction Vectors (BDVs). This representation of structural information is successfully combined with the existing tracking algorithm OpenCV CAMSHIFT Tracker" to demonstrate the simple handling of BDVs. The tracking precision of the CAMSHIFT/BDV combination is increased by modifying the statistical analysis that is used by the tracking algorithm.The supremacy of the modified version of the tracking algorithm over the original version is proved with an extensive empirical evaluation. These evaluation series also demonstrate how tracking systems can be compared in a precise and scientifically founded way."
商品描述(中文翻譯)
這篇學位論文介紹了一種新穎的、與顏色無關的特徵,用於影像分析。此外,它描述了一個使用此特徵的應用原型,用於臉部追蹤及其廣泛的評估。這篇論文的主要成就在於開發了一種替代的、簡單且穩健的臉部追蹤解決方案及其他影像處理目的的基礎。這種新方法允許編碼在灰階影像中可識別的局部結構特徵,稱為二元方向向量(Binary Direction Vectors, BDVs)。這種結構信息的表示成功地與現有的追蹤演算法 OpenCV CAMSHIFT Tracker 結合,以展示 BDVs 的簡單處理。通過修改追蹤演算法所使用的統計分析,CAMSHIFT/BDV 組合的追蹤精度得以提高。經過廣泛的實證評估,證明了修改版追蹤演算法相對於原始版本的優越性。這些評估系列還展示了如何以精確且科學的方式比較追蹤系統。