Mathematical Foundations of Big Data Analytics
暫譯: 大數據分析的數學基礎

Shikhman, Vladimir, Müller, David

相關主題

商品描述

In this textbook, basic mathematical models used in Big Data Analytics are presented and application-oriented references to relevant practical issues are made. Necessary mathematical tools are examined and applied to current problems of data analysis, such as brand loyalty, portfolio selection, credit investigation, quality control, product clustering, asset pricing etc. - mainly in an economic context. In addition, we discuss interdisciplinary applications to biology, linguistics, sociology, electrical engineering, computer science and artificial intelligence. For the models, we make use of a wide range of mathematics - from basic disciplines of numerical linear algebra, statistics and optimization to more specialized game, graph and even complexity theories. By doing so, we cover all relevant techniques commonly used in Big Data Analytics.Each chapter starts with a concrete practical problem whose primary aim is to motivate the study of a particular Big Data Analytics technique. Next, mathematical results follow - including important definitions, auxiliary statements and conclusions arising. Case-studies help to deepen the acquired knowledge by applying it in an interdisciplinary context. Exercises serve to improve understanding of the underlying theory. Complete solutions for exercises can be consulted by the interested reader at the end of the textbook; for some which have to be solved numerically, we provide descriptions of algorithms in Python code as supplementary material.This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.

商品描述(中文翻譯)

在這本教科書中,介紹了用於大數據分析的基本數學模型,並針對相關實務問題提供應用導向的參考。必要的數學工具被檢視並應用於當前的數據分析問題,例如品牌忠誠度、投資組合選擇、信用調查、品質控制、產品聚類、資產定價等,主要是在經濟背景下。此外,我們還討論了生物學、語言學、社會學、電機工程、計算機科學和人工智慧等跨學科的應用。對於這些模型,我們利用了廣泛的數學範疇,從數值線性代數、統計學和優化的基本學科,到更專門的博弈論、圖論甚至複雜性理論。通過這樣的方式,我們涵蓋了大數據分析中常用的所有相關技術。

每一章都以一個具體的實務問題開始,其主要目的是激發對特定大數據分析技術的學習動機。接下來是數學結果,包括重要的定義、輔助陳述和得出的結論。案例研究有助於通過在跨學科的背景中應用所學知識來加深理解。練習題則用於提高對基礎理論的理解。對於有興趣的讀者,教科書末尾提供了練習題的完整解答;對於需要數值解決的題目,我們提供了用Python代碼描述的算法作為補充材料。

這本教科書已被推薦並為德國、奧地利和瑞士的大學課程開發。

作者簡介

Vladimir Shikhman is a professor of Economathematics at Chemnitz University of Technology.David Müller is one of his doctoral students.

作者簡介(中文翻譯)

弗拉基米爾·希赫曼(Vladimir Shikhman)是開姆尼茨科技大學(Chemnitz University of Technology)經濟數學(Economathematics)教授。大衛·穆勒(David Müller)是他的博士生之一。