General-Purpose Optimization Through Information Maximization
暫譯: 通用優化透過資訊最大化

Lockett, Alan J.

  • 出版商: Springer
  • 出版日期: 2020-08-17
  • 售價: $8,670
  • 貴賓價: 9.5$8,237
  • 語言: 英文
  • 頁數: 561
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3662620065
  • ISBN-13: 9783662620069
  • 海外代購書籍(需單獨結帳)

商品描述

This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization.

The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functional analysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.

The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory.

商品描述(中文翻譯)

這本書探討了離散程式與其模擬的連續空間現象之間的不匹配,這些離散程式位於現代應用數學的中心。作者考慮我們是否可以想像程式的連續空間,並詢問這些空間的結構會是什麼,以及它們將如何構成。他提出了一種通過迭代優化的視角來聚焦於程式空間的函數分析。

作者首先觀察到,像遺傳演算法(Genetic Algorithms)、演化策略(Evolution Strategies)和粒子群優化(Particle Swarm Optimization)等優化方法可以被分析為分佈估計演算法(Estimation of Distributions Algorithms, EDAs),因為它們可以被表述為條件概率分佈。這些概率本身是可以比較和操作的數學對象,因此許多演化計算中的方法可以被放置在共享的向量空間中,並使用函數分析的技術進行分析。本書的核心思想擴展自這一概念,最終納入所有的迭代隨機搜索方法,包括基於梯度的方法。受到隨機搜索啟發,作者涵蓋了所有的迭代優化方法,而不僅僅是演化方法。無免費午餐定理(No Free Lunch Theorem)被視為引入更廣泛分析領域的有用介紹,這一領域源於為優化演算法開發共享數學空間。作者引入了來自數學幾個分支的直覺,如拓撲學、概率論和隨機過程,並提供了大量背景材料,以使這項工作儘可能自足。

這本書對於全球優化、機器學習、演化理論和控制理論領域的研究人員將具有重要價值。

作者簡介

Alan J. Lockett received his PhD in 2012 at the University of Texas at Austin under the supervision of Risto Miikkulainen, where his research topics included estimation of temporal probabilistic models, evolutionary computation theory, and learning neural network controllers for robotics. After a postdoc in IDSIA (Lugano) with Jürgen Schmidhuber he now works for CS Disco in Houston.

作者簡介(中文翻譯)

艾倫·J·洛克特於2012年在德克薩斯州大學奧斯汀分校獲得博士學位,指導教授為里斯托·米庫萊寧(Risto Miikkulainen),他的研究主題包括時間概率模型的估計、進化計算理論,以及為機器人學習神經網絡控制器。在與尤爾根·施密德胡伯(Jürgen Schmidhuber)在IDSIA(盧加諾)進行博士後研究後,他目前在休士頓的CS Disco工作。