Fireworks Algorithm: A Novel Swarm Intelligence Optimization Method
暫譯: 煙火演算法:一種新穎的群體智慧優化方法

Ying Tan

  • 出版商: Springer
  • 出版日期: 2015-10-20
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 323
  • 裝訂: Hardcover
  • ISBN: 3662463520
  • ISBN-13: 9783662463529
  • 相關分類: ARMAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.

商品描述(中文翻譯)

本書專注於煙火演算法(Fireworks Algorithm, FWA)各方面的最新進展,特別強調FWA的高效改進版本。書中描述了最重要的理論分析,包括FWA的基本原理與實作,以及FWA的建模和理論分析。它全面涵蓋了迄今為止FWA改進的關鍵近期重要研究。此外,本書還描述了FWA研究中的幾個進階主題,包括多目標優化(Multi-Objective Optimization, MOO)、用於組合優化的離散FWA(Discrete FWA, DFWA),以及基於GPU的FWA以實現平行運算。在後續章節中,詳細說明了FWA在非負矩陣分解(Non-Negative Matrix Factorization, NMF)、文本聚類、模式識別、地震反演問題和群體機器人等方面的幾個成功應用,這些可能為未來更多的實際應用提供新的啟示。本書涉及多學科主題,將吸引元啟發式(Metaheuristics)、群體智慧(Swarm Intelligence)、演化計算(Evolutionary Computation)、複雜優化解決等領域的研究人員和專業人士。