Fireworks Algorithm: A Novel Swarm Intelligence Optimization Method (煙火演算法:一種新穎的群體智慧優化方法)

Ying Tan

  • 出版商: Springer
  • 出版日期: 2015-10-20
  • 售價: $4,450
  • 貴賓價: 9.5$4,228
  • 語言: 英文
  • 頁數: 323
  • 裝訂: Hardcover
  • ISBN: 3662463520
  • ISBN-13: 9783662463529
  • 相關分類: ARMAlgorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.

商品描述(中文翻譯)

本書專注於煙火演算法(FWA)在各個方面的最新發展,特別強調FWA的高效改進版本。它描述了FWA的基本原理和實現,以及FWA的建模和理論分析等最重要的理論分析。本書全面介紹了FWA改進的最新重要研究成果。此外,本書還介紹了FWA研究中的一些高級主題,包括多目標優化(MOO)、組合優化的離散FWA(DFWA)和基於GPU的FWA的並行實現。在後續章節中,本書詳細介紹了FWA在非負矩陣分解(NMF)、文本聚類、模式識別、地震反演問題和群體機器人等領域的成功應用,這些應用可能為未來更多的實際應用提供新的思路。作為一個跨學科的主題,本書將吸引元啟發式、群體智能、進化計算、複雜優化求解等領域的研究人員和專業人士的興趣。