CPU-based Application Transformation to CUDA: Transformation of CPU-based Applications To Leverage on Graphics Processors using CUDA (Paperback)
暫譯: 基於CPU的應用程式轉換為CUDA:利用CUDA將基於CPU的應用程式轉換為圖形處理器
Anas Mohd Nazlee, Fawnizu Azmadi Hussin
- 出版商: LAP LAMBERT
- 出版日期: 2012-07-11
- 售價: $2,130
- 貴賓價: 9.5 折 $2,024
- 語言: 英文
- 頁數: 88
- 裝訂: Paperback
- ISBN: 3659171212
- ISBN-13: 9783659171215
-
相關分類:
CUDA
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$660$627 -
$2,230$2,119 -
$1,225Operating System Concepts with Java, 8/e (IE-Paperback)
-
$590$466 -
$490$387 -
$1,323Thomas' Calculus Early Transcendentals, 12/e (IE-Paperback)
-
$380$372 -
$480$379 -
$2,470Voice over LTE (VoLTE) (Hardcover)
-
$2,057Security Patterns in Practice: Designing Secure Architectures Using Software Patterns (Hardcover)
-
$450$356 -
$950$751 -
$299$254 -
$680$537 -
$880$695 -
$480$408 -
$780$616 -
$490$417 -
$540$459 -
$349$297 -
$500$395 -
$320$250 -
$380$342 -
$680$578 -
$320$320
相關主題
商品描述
Scientific computation requires a great amount of computing power especially in floating-point operation but a high-end multi-cores processor is currently limited in terms of floating point operation performance and parallelization. Recent technological advancement has made parallel computing technically and financially feasible using Compute Unified Device Architecture (CUDA) developed by NVIDIA. This research focuses on measuring the performance of CUDA and implementing CUDA for a scientific computation involving the process of porting the source code from CPU to GPU using direct integration technique. The ported source code is then optimized by managing the resources to achieve performance gain over CPU. It is found that CUDA is able to boost the performance of the system up to 69 times in Parboil Benchmark Suite. Successful attempt at porting Serpent encryption algorithm and Lattice Boltzmann Method provided up to 7 times throughput performance gain and up to 10 times execution time performance gain respectively over the CPU. Direct integration guideline for porting the source code is then produced based on the two implementations.
商品描述(中文翻譯)
科學計算需要大量的計算能力,特別是在浮點運算方面,但目前高端多核心處理器在浮點運算性能和並行化方面仍然有限。最近的技術進步使得使用 NVIDIA 開發的計算統一設備架構(Compute Unified Device Architecture, CUDA)進行並行計算在技術上和財務上都變得可行。本研究專注於測量 CUDA 的性能,並實現 CUDA 用於科學計算,涉及將源代碼從 CPU 移植到 GPU 的過程,使用直接整合技術。移植後的源代碼通過管理資源進行優化,以實現相對於 CPU 的性能提升。研究發現,CUDA 能夠在 Parboil 基準測試套件中將系統性能提升至多 69 倍。成功將 Serpent 加密算法和格子玻爾茲曼方法移植的嘗試,分別提供了相對於 CPU 的 7 倍吞吐量性能提升和 10 倍執行時間性能提升。基於這兩個實現,隨後產生了移植源代碼的直接整合指導方針。