Feature Selection Methods Best Practices: Data mining Approach (Paperback)
暫譯: 特徵選擇方法最佳實踐:資料探勘方法

Subramanian Appavu alias Balamurugan

  • 出版商: LAP LAMBERT
  • 出版日期: 2012-06-25
  • 售價: $2,150
  • 貴賓價: 9.5$2,043
  • 語言: 英文
  • 頁數: 64
  • 裝訂: Paperback
  • ISBN: 3659164518
  • ISBN-13: 9783659164514
  • 相關分類: Data-mining
  • 無法訂購

相關主題

商品描述

Feature selection is a term commonly used in data mining to describe the tools and techniques available for reducing inputs to a manageable size for processing and analysis. Feature selection implies not only cardinality reduction, which means imposing an arbitrary or predefined cutoff on the number of attributes that can be considered when building a model, but also the choice of attributes, meaning that either the analyst or the modeling tool actively selects or discards attributes based on their usefulness for analysis. “Feature selection methods best Practices” is the mast reference that practitioners and researchers have long been seeking. It is also the obvious choice for academic and research scholars.

商品描述(中文翻譯)

特徵選擇是一個在資料探勘中常用的術語,用來描述可用於將輸入減少到可管理大小以便進行處理和分析的工具和技術。特徵選擇不僅意味著基數減少,這是指對於在建立模型時可以考慮的屬性數量施加任意或預定的截止限制,還包括屬性的選擇,這意味著分析師或建模工具根據屬性對分析的有用性主動選擇或丟棄屬性。“特徵選擇方法最佳實踐”是從業者和研究人員長期以來所尋求的主要參考資料。這也是學術和研究學者的明顯選擇。