Machine Learning-Based Prediction of Missing Parts for Assembly

Steinberg, Fabian

  • 出版商: Springer Vieweg
  • 出版日期: 2024-06-20
  • 售價: $4,430
  • 貴賓價: 9.5$4,209
  • 語言: 英文
  • 頁數: 155
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 3658450320
  • ISBN-13: 9783658450328
  • 相關分類: Machine LearningAssembly
  • 下單後立即進貨 (約1週~2週)

相關主題

商品描述

Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly operations.

商品描述(中文翻譯)

製造公司在管理日益複雜的流程同時,面臨著準時交貨的需求挑戰,這在關鍵流程如組裝時尤為明顯。及早識別組裝初期可能缺失的零件,成為維持交貨承諾的重要策略。本書著手開發基於機器學習的預測模型,以應對這一挑戰。通過系統性的文獻回顧,突顯了當前預測方法的不足,特別是材料數據的未充分利用以及在採購過程中預測能力的滯後。透過機械行業的案例研究,驗證了材料數據對於預測內部生產缺失零件模型質量的顯著影響。此外,還實施了一個預測採購過程中交貨延遲的模型,使得在下訂單時能夠預測供應商可能缺失的零件。這些進展成為生產規劃者和採購專業人士不可或缺的工具,使他們能夠主動應對組裝作業中的材料可用性挑戰。

作者簡介

Fabian Steinberg studied production technology at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen with a Master's degree. In his subsequent doctorate at the Chair of International Production Engineering and Management (IPEM) at the University of Siegen, he focussed on the prediction of missing parts for assembly using artificial intelligence.

作者簡介(中文翻譯)

Fabian Steinberg 在亞琛工業大學 (RWTH Aachen) 學習生產技術並獲得碩士學位。在隨後於西根大學 (University of Siegen) 國際生產工程與管理 (IPEM) 的博士研究中,他專注於利用人工智慧預測組裝所需的缺失零件。