Analysis and Design of Machine Learning Techniques: Evolutionary Solutions for Regression, Prediction, and Control Problems
暫譯: 機器學習技術的分析與設計:回歸、預測與控制問題的演化解決方案

Patrick Stalph

  • 出版商: Springer
  • 出版日期: 2014-02-17
  • 售價: $2,410
  • 貴賓價: 9.5$2,290
  • 語言: 英文
  • 頁數: 176
  • 裝訂: Paperback
  • ISBN: 3658049367
  • ISBN-13: 9783658049362
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. Nevertheless, motor skills are not easy to learn for humans and this is also an active research topic in robotics. However, most solutions are optimized for industrial applications and, thus, few are plausible explanations for human learning. The fundamental challenge, that motivates Patrick Stalph, originates from the cognitive science: How do humans learn their motor skills? The author makes a connection between robotics and cognitive sciences by analyzing motor skill learning using implementations that could be found in the human brain – at least to some extent. Therefore three suitable machine learning algorithms are selected – algorithms that are plausible from a cognitive viewpoint and feasible for the roboticist. The power and scalability of those algorithms is evaluated in theoretical simulations and more realistic scenarios with the iCub humanoid robot. Convincing results confirm the applicability of the approach, while the biological plausibility is discussed in retrospect.

商品描述(中文翻譯)

操控或抓取物體對人類來說似乎是一項微不足道的任務,因為這些都是日常生活中的運動技能。然而,運動技能對人類來說並不容易學習,這也是機器人學中的一個活躍研究主題。然而,大多數解決方案都是針對工業應用進行優化,因此,對於人類學習的解釋卻很少。激勵Patrick Stalph的根本挑戰源自認知科學:人類是如何學習其運動技能的?作者通過分析運動技能學習,將機器人學與認知科學聯繫起來,使用的實現方式在某種程度上可以在人體大腦中找到。因此,選擇了三種合適的機器學習算法——這些算法從認知的角度看是合理的,並且對機器人學家來說是可行的。這些算法的效能和可擴展性在理論模擬和更現實的場景中進行評估,使用的對象是iCub人形機器人。令人信服的結果確認了該方法的適用性,而生物學的合理性則在事後進行討論。