Growing Adaptive Machines: Combining Development and Learning in Artificial Neural Networks (Studies in Computational Intelligence)
暫譯: 成長中的自適應機器:在人工神經網絡中結合開發與學習(計算智能研究)

  • 出版商: Springer
  • 出版日期: 2014-06-26
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 261
  • 裝訂: Hardcover
  • ISBN: 3642553362
  • ISBN-13: 9783642553363
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks.

The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the Hyper NEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the desi

gn of virtual multi-component robots and morphologies and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines.

This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning.

商品描述(中文翻譯)

人工智慧的追求已經成為數十年來一個高度活躍的研究領域,產生了令人興奮的科學見解和富有成效的新技術。然而,在生成智慧方面,這一追求僅取得有限的成功。本書探討了適應性增長是一種前進的手段的假設。通過模仿生物發展的過程,我們可以將自然神經系統的理想特徵融入工程設計中,從而更接近於創造類腦系統。本書特別關注如何為工程任務設計人工神經網絡。

本書由18位研究者的貢獻組成,涵蓋了從資深科學家對近期領域的詳細回顧,到代表機器學習研究最前沿的令人興奮的新貢獻。本書以人工神經生成和生物啟發的機器學習的廣泛概述開始,適合作為這些領域的入門介紹和專家的參考資料。幾篇貢獻提供了對近期高度成功的研究方向的觀點和未來假設,包括深度學習、發展神經網絡設計的Hyper NEAT模型,以及視覺皮層的模擬。其他貢獻涵蓋了生物啟發的人工神經網絡設計的最新進展,包括分類機器的創建、虛擬代理的行為控制、多組件機器人和形態的設計,以及靈活智慧的創造。在整個過程中,貢獻者分享了他們在創造類腦機器的手段和好處方面的豐富專業知識。

本書適合人工智慧和機器學習的高級學生和從業者。

最後瀏覽商品 (20)