Analyzing Evolutionary Algorithms: The Computer Science Perspective (Natural Computing Series)
暫譯: 分析進化演算法:計算機科學的視角(自然計算系列)

Thomas Jansen

  • 出版商: Springer
  • 出版日期: 2015-01-29
  • 售價: $2,320
  • 貴賓價: 9.5$2,204
  • 語言: 英文
  • 頁數: 268
  • 裝訂: Paperback
  • ISBN: 3642436013
  • ISBN-13: 9783642436017
  • 相關分類: Algorithms-data-structuresComputer-Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years.

 

In this book the author provides an introduction to the methods used to analyze evolutionary algorithms and other randomized search heuristics. He starts with an algorithmic and modular perspective and gives guidelines for the design of evolutionary algorithms. He then places the approach in the broader research context with a chapter on theoretical perspectives. By adopting a complexity-theoretical perspective, he derives general limitations for black-box optimization, yielding lower bounds on the performance of evolutionary algorithms, and then develops general methods for deriving upper and lower bounds step by step. This main part is followed by a chapter covering practical applications of these methods.

 

The notational and mathematical basics are covered in an appendix, the results presented are derived in detail, and each chapter ends with detailed comments and pointers to further reading. So the book is a useful reference for both graduate students and researchers engaged with the theoretical analysis of such algorithms.

 

商品描述(中文翻譯)

進化演算法是一類受到自然進化啟發的隨機啟發式演算法。它們被應用於許多不同的情境,特別是在優化方面,對這類演算法的分析在近年來取得了巨大的進展。

在這本書中,作者提供了分析進化演算法和其他隨機搜尋啟發式演算法的方法介紹。他從演算法和模組化的角度出發,給出了設計進化演算法的指導方針。接著,他將這種方法置於更廣泛的研究背景中,並以一章關於理論觀點的內容進行補充。通過採用複雜性理論的視角,他推導出黑箱優化的一般限制,從而得出進化演算法性能的下限,然後逐步發展出推導上限和下限的一般方法。這一主要部分之後,還有一章涵蓋這些方法的實際應用。

附錄中涵蓋了符號和數學基礎,所呈現的結果詳細推導,每章結尾都有詳細的評論和進一步閱讀的指引。因此,這本書對於從事這類演算法理論分析的研究生和研究人員來說,都是一本有用的參考資料。