Approximation Algorithms and Semidefinite Programming
暫譯: 近似演算法與半正定規劃

Bernd Gärtner

  • 出版商: Springer
  • 出版日期: 2014-02-22
  • 售價: $2,830
  • 貴賓價: 9.5$2,689
  • 語言: 英文
  • 頁數: 264
  • 裝訂: Paperback
  • ISBN: 3642433324
  • ISBN-13: 9783642433320
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material.  

There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms.

 

This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

商品描述(中文翻譯)

半正定規劃是可以以合理效率解決的最大類別的優化問題之一——無論在理論上還是實踐中。它在多個研究領域中扮演著關鍵角色,例如組合優化、近似演算法、計算複雜性、圖論、幾何、實代數幾何和量子計算。本書是對半正定規劃及其在近似演算法中應用的選定方面的介紹。它涵蓋了基礎知識,同時也包含了大量近期和更高級的材料。

有許多計算問題,例如 MAXCUT,對於這些問題,人們無法合理地期望高效地獲得精確解,因此在這種情況下,必須接受近似解。對於 MAXCUT 及其相關問題,令人興奮的近期結果表明,半正定規劃可能是最終的工具。事實上,假設唯一遊戲猜想(Unique Games Conjecture)成立,這是一個合理但尚未證明的假設,已經顯示對於這些問題,基於半正定規劃的已知演算法在所有多項式時間演算法中提供了最佳的近似比率。

本書遵循這些發展的「半正定面」,介紹基於半正定規劃的近似演算法背後的一些主要思想。它發展了半正定規劃的基本理論,詳細介紹了其中一個已知的高效演算法,並描述了其他一些演算法的原理。它還包括應用,重點放在近似演算法上。