Neuromathematics of Vision (Lecture Notes in Morphogenesis)
暫譯: 視覺的神經數學(形態生成講義)

  • 出版商: Springer
  • 出版日期: 2014-02-20
  • 售價: $4,470
  • 貴賓價: 9.5$4,247
  • 語言: 英文
  • 頁數: 367
  • 裝訂: Hardcover
  • ISBN: 3642344437
  • ISBN-13: 9783642344435
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is devoted to the study of the functional architecture of the visual cortex. Its geometrical structure is the differential geometry of the connectivity between neural cells. This connectivity is building and shaping the hidden brain structures underlying visual perception. The story of the problem runs over the last 30 years, since the discovery of Hubel and Wiesel of the modular structure of the primary visual cortex, and slowly cams towards a theoretical understanding of the experimental data on what we now know as functional architecture of the primary visual cortex.
Experimental data comes from several domains: neurophysiology, phenomenology of perception and neurocognitive imaging. Imaging techniques like functional MRI and diffusion tensor MRI allow to deepen the study of cortical structures. Due to this variety of experimental data, neuromathematematics deals with modelling both cortical structures and perceptual spaces.
From the mathematical point of view, neuromathematical call for new instruments of pure mathematics: sub-Riemannian geometry models horizontal connectivity, harmonic analysis in non commutative groups allows to understand pinwheels structure, as well as non-linear dimensionality reduction is at the base of many neural morphologies and possibly of the emergence of perceptual units. But at the center of the neurogeometry is the problem of harmonizing contemporary mathematical instruments with neurophysiological findings and phenomenological experiments in an unitary science of vision.
The contributions to this book come from the very founders of the discipline.

商品描述(中文翻譯)

本書專注於視覺皮層的功能架構研究。其幾何結構是神經細胞之間連接的微分幾何。這種連接正在構建和塑造隱藏在視覺感知背後的大腦結構。這個問題的歷史可以追溯到過去30年,自從Hubel和Wiesel發現初級視覺皮層的模組結構以來,逐漸朝向對實驗數據的理論理解,這些數據現在被稱為初級視覺皮層的功能架構。

實驗數據來自幾個領域:神經生理學、感知現象學和神經認知成像。功能性磁共振成像(functional MRI)和擴散張量成像(diffusion tensor MRI)等成像技術使得對皮層結構的研究更加深入。由於這種多樣的實驗數據,神經數學(neuromathematics)致力於對皮層結構和感知空間進行建模。

從數學的角度來看,神經數學呼籲純數學的新工具:亞黎曼幾何(sub-Riemannian geometry)模型描述了水平連接,非交換群中的諧波分析(harmonic analysis)使我們能夠理解旋轉輪結構(pinwheels structure),而非線性降維(non-linear dimensionality reduction)則是許多神經形態的基礎,並可能與感知單元的出現有關。但在神經幾何的中心問題是如何將當代數學工具與神經生理學發現和現象學實驗協調起來,形成一個統一的視覺科學。

本書的貢獻來自於該學科的創始人。