Exact Exponential Algorithms(Hardcover) (精確指數演算法(精裝版))
Fedor V. Fomin, Dieter Kratsch
- 出版商: Springer
- 出版日期: 2010-10-27
- 售價: $3,330
- 貴賓價: 9.5 折 $3,164
- 語言: 英文
- 頁數: 206
- 裝訂: Hardcover
- ISBN: 364216532X
- ISBN-13: 9783642165320
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,270$1,207
相關主題
商品描述
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.
商品描述(中文翻譯)
長期以來,計算機科學家一直區分快速和慢速算法。快速(或良好)算法是指在多項式時間內運行的算法,這意味著算法解決問題所需的步驟數量受到輸入長度某個多項式的限制。所有其他算法則被視為慢速(或不良)算法。慢速算法的運行時間通常是指數級的。本書將探討不良算法。我們對指數時間算法感興趣的原因有幾個。大多數人相信,存在許多自然問題無法用多項式時間算法解決。最著名且最古老的困難問題家族是 NP 完全問題家族。最有可能的是,沒有多項式時間算法能解決這些困難問題,而在最糟糕的情況下,指數運行時間是不可避免的。每個組合問題都可以通過列舉所有可能的解決方案來在有限時間內解決,即通過暴力搜索。然而,暴力搜索是否總是不可避免的呢?絕對不是。早在1960年代和1970年代,就已經知道某些 NP 完全問題可以比暴力搜索顯著更快地解決。三個經典的例子是針對旅行推銷員問題(TRAVELLING SALESMAN)、最大獨立集(MAXIMUM INDEPENDENT SET)和著色問題(COLORING)的算法。