Algorithms for Efficient Learning Systems: Online and Active Learning Approaches (Paperback)
暫譯: 高效學習系統的演算法:線上與主動學習方法 (平裝本)

Seyda Ertekin

  • 出版商: VDM Verlag
  • 出版日期: 2009-11-18
  • 售價: $2,520
  • 貴賓價: 9.5$2,394
  • 語言: 英文
  • 頁數: 160
  • 裝訂: Paperback
  • ISBN: 3639210697
  • ISBN-13: 9783639210699
  • 相關分類: Algorithms-data-structures
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

In the last few decades, we have been witnessing an information revolution that can be traced back to the invention of integrated circuits and computer chips. The widespread use of electronic devices and computing resources has tremendously increased the rate at which we generate, gather and store data in every fields of science, business and engineering. Machine learning takes center stage in our quest for analyzing this vast amount of data and extracting latent knowledge from it. However, as the datasets grow, increased running time and memory constraints may become prohibitive. Additionally, real-world data can have noise and imbalanced class distribution, which adversely affect the generalization accuracy of learning algorithms. In order to cope with these challenges, science in the 21st century requires a different set of computational techniques and algorithms. This book presents methodologies that address these issues with the goal of improving scalability, computational and data efficiency and generalization performance of machine learning algorithms in the context of online and active learning with a particular focus on Support Vector Machines.

商品描述(中文翻譯)

在過去幾十年中,我們目睹了一場信息革命,這場革命可以追溯到集成電路和計算機晶片的發明。電子設備和計算資源的廣泛使用極大地提高了我們在各個科學、商業和工程領域生成、收集和存儲數據的速度。機器學習在我們分析這龐大數據量並從中提取潛在知識的過程中扮演了核心角色。然而,隨著數據集的增長,運行時間和內存限制可能變得無法承受。此外,現實世界中的數據可能存在噪聲和不平衡的類別分佈,這會對學習算法的泛化準確性產生不利影響。為了應對這些挑戰,21世紀的科學需要一套不同的計算技術和算法。本書提出了針對這些問題的方法論,旨在改善機器學習算法在在線學習和主動學習背景下的可擴展性、計算和數據效率以及泛化性能,特別聚焦於支持向量機(Support Vector Machines)。