Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories (SpringerBriefs in Computer Science)
暫譯: 從演變區域軌跡中挖掘時空頻繁模式 (SpringerBriefs in Computer Science)

Berkay Aydin

  • 出版商: Springer
  • 出版日期: 2018-10-18
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 120
  • 裝訂: Paperback
  • ISBN: 3319998722
  • ISBN-13: 9783319998725
  • 相關分類: 物聯網 IoTComputer-Science
  • 海外代購書籍(需單獨結帳)

商品描述

This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories.

This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists.

商品描述(中文翻譯)

這本 SpringerBrief 提供了關於資料挖掘中時空頻繁模式挖掘的概述,涵蓋了從演變區域到時空物件之間關係建模的視角、頻繁模式挖掘演算法以及挖掘演算法的資料存取方法。雖然本書的重點是讓讀者深入了解來自演變區域的挖掘演算法,但作者也討論了時空軌跡的資料管理,隨著軌跡數量的增加,這一點變得越來越重要。

這本簡介描述了最先進的知識發現技術,針對對時空資料挖掘感興趣的計算機科學研究生,以及在其領域中處理高級時空資料分析的研究人員/專業人士。這些領域包括地理資訊系統(GIS)專家、氣象學家、流行病學家、神經學家和太陽物理學家。