Machine Learning at the Belle II Experiment: The Full Event Interpretation and Its Validation on Belle Data (Springer Theses)
暫譯: 貝爾 II 實驗中的機器學習:完整事件解釋及其在貝爾數據上的驗證(斯普林格論文)
Thomas Keck
- 出版商: Springer
- 出版日期: 2019-01-12
- 售價: $5,200
- 貴賓價: 9.5 折 $4,940
- 語言: 英文
- 頁數: 174
- 裝訂: Hardcover
- ISBN: 3319982486
- ISBN-13: 9783319982489
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
商品描述
This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments.
The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts.
The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties.
The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the Υ resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor.
The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay “B→tau nu”, which is used to validate the algorithms discussed in previous parts.
商品描述(中文翻譯)
這本書探討了如何利用機器學習來提高昂貴的基礎科學實驗的效率。
第一部分介紹了Belle和Belle II實驗,詳細描述了目前許多分析師使用的Belle到Belle II數據轉換工具。
第二部分涵蓋了高能物理中的機器學習,詳細討論了Belle II的機器學習基礎設施和選定的算法。此外,還檢視了幾種可以用來控制和減少系統性不確定性的機器學習技術。
第三部分研究了獨特於在Υ共振下運行的物理實驗的重要專屬B標記技術,並深入研究了新穎的全事件解釋算法,該算法使其前身的最大標記側效率翻倍。
第四部分呈現了稀有輕子B衰變“B→tau nu”的分支比的完整測量,該測量用於驗證前面部分中討論的算法。