Models of Computation for Big Data (Advanced Information and Knowledge Processing)
暫譯: 大數據的計算模型(進階資訊與知識處理)

Rajendra Akerkar

  • 出版商: Springer
  • 出版日期: 2018-12-17
  • 售價: $2,990
  • 貴賓價: 9.5$2,841
  • 語言: 英文
  • 頁數: 112
  • 裝訂: Paperback
  • ISBN: 3319918508
  • ISBN-13: 9783319918501
  • 相關分類: 大數據 Big-data
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory.

Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.

商品描述(中文翻譯)

大數據的浪潮改變了產業和學術研究在解決基礎問題和實際應用方面的視角。這需要在演算法和其底層數學技術上進行範式轉變。需要理解基礎優勢並解決大數據中的尖端挑戰,這些挑戰可能會帶來實際影響。本書的主要目標是介紹處理大數據集的演算法技術。傳統演算法在輸入數據能夠很好地適應記憶體時運作成功。然而,在許多最近的應用情境中,輸入數據的大小過於龐大,無法適應記憶體。

《大數據的計算模型》涵蓋了開發此類演算法的數學模型,這些模型源於對各種應用中經常出現的大數據的研究。大多數討論的技術來自於過去十年的研究。本書將結構化為一系列的演算法思想、理論基礎和該演算法思想的實際應用。適合研究生和高年級本科生閱讀,沒有正式的先修課程要求,但讀者應該熟悉演算法設計與分析、離散數學、機率論,並具備一般的數學成熟度。