Adaptive Dynamic Programming with Applications in Optimal Control
暫譯: 自適應動態規劃及其在最佳控制中的應用

Liu, Derong, Wei, Qinglai, Wang, Ding

相關主題

商品描述

This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors' work:

- renewable energy scheduling for smart power grids;- coal gasification processes; and- water-gas shift reactions.
Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

商品描述(中文翻譯)

本書涵蓋了自適應動態規劃(Adaptive Dynamic Programming, ADP)的最新發展。文本首先對ADP進行了徹底的背景回顧,確保讀者對基本概念有足夠的了解。在書的核心部分,作者首先探討離散時間系統,然後再討論連續時間系統。對於離散時間系統的討論,從更一般的價值迭代形式開始,以展示其收斂性、最優性和穩定性,並進行完整而徹底的理論分析。接著研究了一種更現實的價值迭代形式,假設價值函數近似具有有限誤差。自適應動態規劃還詳細介紹了ADP方法的另一個途徑:策略迭代。對於基於策略迭代的ADP,研究了基本形式和廣義形式,並在收斂性、最優性、穩定性和誤差界限方面進行了完整而徹底的理論分析。在連續時間系統中,使用ADP方法研究了仿射和非仿射非線性系統的控制,然後將其擴展到控制理論的其他分支,包括去中心化控制、穩健和保證成本控制以及博弈論。在書的最後部分,介紹了ADP理論的現實意義,重點關注三個應用範例,這些範例源自作者的工作:
- 智慧電網的可再生能源調度;
- 煤氣化過程;
- 水氣轉化反應。

研究智能控制方法的研究人員以及希望在化學過程和電力供應行業中應用這些方法的實踐者,將會對這一高級控制方法的全面探討感興趣。

作者簡介

Derong Liu received the Ph.D. degree in electrical engineering from the University of Notre Dame, Indiana, USA, in 1994. Dr. Liu was a Staff Fellow with General Motors Research and Development Center, from 1993 to 1995. He was an Assistant Professor with the Department of Electrical and Computer Engineering, Stevens Institute of Technology, from 1995 to 1999. He joined the University of Illinois at Chicago in 1999, and became a Full Professor of Electrical and Computer Engineering and of Computer Science in 2006. He was selected for the "100 Talents Program" by the Chinese Academy of Sciences in 2008. He has published 16 books. Dr. Liu was the Editor-in-Chief of the IEEE Transactions on Neural Networks and Learning Systems, from 2010 to 2015. Currently, he is an elected AdCom member of the IEEE Computational Intelligence Society, he is the Editor-in-Chief of Artificial Intelligence Review, and he serves as the Vice President of Asia-Pacific Neural Network Society. He was the General Chair of 2014 IEEE World Congress on Computational Intelligence and was the General Chair of 2016 World Congress on Intelligent Control and Automation. He received the Faculty Early Career Development Award from the National Science Foundation in 1999, the University Scholar Award from University of Illinois from 2006 to 2009, the Overseas Outstanding Young Scholar Award from the National Natural Science Foundation of China in 2008, and the Outstanding Achievement Award from Asia Pacific Neural Network Assembly in 2014. He is a Fellow of the IEEE and a Fellow of the International Neural Network Society.

Qinglai Weie="font-family: 'Courier New';"> received the Ph.D. degree in control theory and control engineering, from the Northeastern University, Shenyang, China, in 2009. From 2009 to 2011, he was a postdoctoral fellow with The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. He is currently a Professor of the institute. Prof. Wei is an Associate Editor of IEEE Transactions on Systems, Man, and Cybernetics: Systems, Information Sciences, Neurocomputing, Optimal Control Applications and Methods, and Acta Automatica Sinica, and was an Associate Editor of IEEE Transactions on Neural Networks and Learning Systems during 2014-2015. He was the organizing committee member of several international conferences. He was recipient of Asia Pacific Neural Networks Society (APNNS) young researcher award in 2016. He was a recipient of the Outstanding Paper Award of Acta Automatica Sinica in 2011 and Zhang Siying Outstanding Paper Award of Chinese Control and Decision Conference (CCDC) in 2015.

Ding Wang received the Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2012. He is currently an Associate Professor with The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. He has been a Visiting Scholar with the Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA, since 2015. His research interests include adaptive and learning systems, intelligent control, and neural networks. He has published over 70 journal and conference papers, and coauthored two monographs. He was the organizing committee member of several international conferences. He was recipient of the Excellent Doctoral Dissertation Award of Chinese Academy of Sciences in 2013. He serves as an Associate Editor of IEEE Transactions on Neural Networks and Learning Systems and Neurocomputing. He is a member of IEEE, Asia-Pacific Neural Network Society (APNNS), and CAA.

Xiong Yang received the Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2014. Dr. Yang was a recipient of the Excellent Award of Presidential Scholarship of Chinese Academy of Sciences in 2014. He was an Assistant Professor with The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, from 2014 to 2016. He is currently an Associate Professor with School of Electrical Engineering and Automation, Tianjin University.

Hongliang Li received the Ph.D. degree in control theory and control engineering from the University of Chinese Academy of Sciences in 2015. Dr. Li was a Research Scientist with IBM Research - China, Beijing, from 2015 to 2016. He joined Tencent Inc., Shenzhen, China, in 2016. He has published more than 10 journal papers on adaptive dynamic programming and reinforcement learning.

作者簡介(中文翻譯)

劉德榮於1994年獲得美國印第安納州聖母大學電機工程博士學位。劉博士於1993年至1995年間在通用汽車研究與開發中心擔任研究員。1995年至1999年,他在史蒂文斯理工學院電機與計算機工程系擔任助理教授。1999年,他加入伊利諾伊大學芝加哥分校,並於2006年成為電機與計算機工程及計算機科學的正教授。他於2008年被中國科學院選為「百人計畫」人才。他已出版16本書籍。劉博士於2010年至2015年間擔任《IEEE神經網路與學習系統期刊》的主編。目前,他是IEEE計算智能學會的當選AdCom成員,並擔任《人工智慧評論》的主編,同時擔任亞太神經網路學會的副會長。他曾擔任2014年IEEE計算智能世界大會的總主席,以及2016年智能控制與自動化世界大會的總主席。他於1999年獲得美國國家科學基金會的教職早期職業發展獎,2006年至2009年獲得伊利諾伊大學的學者獎,2008年獲得中國國家自然科學基金的海外優秀青年學者獎,並於2014年獲得亞太神經網路大會的傑出成就獎。他是IEEE的會士及國際神經網路學會的會士。

魏青來於2009年獲得中國沈陽東北大學控制理論與控制工程博士學位。2009年至2011年,他在中國科學院自動化研究所複雜系統管理與控制國家重點實驗室擔任博士後研究員。目前,他是該研究所的教授。魏教授是《IEEE系統、人類與控制論:系統》、《信息科學》、《神經計算》、《最佳控制應用與方法》及《自動化學報》的副編輯,並於2014年至2015年間擔任《IEEE神經網路與學習系統期刊》的副編輯。他曾擔任多個國際會議的組織委員會成員。2016年,他獲得亞太神經網路學會(APNNS)青年研究者獎。2011年,他獲得《自動化學報》的優秀論文獎,並於2015年獲得中國控制與決策會議(CCDC)的張思穎優秀論文獎。

王丁於2012年獲得中國科學院自動化研究所控制理論與控制工程博士學位。目前,他是中國科學院自動化研究所複雜系統管理與控制國家重點實驗室的副教授。自2015年以來,他一直擔任美國羅德島大學電機、計算機及生物醫學工程系的訪問學者。他的研究興趣包括自適應與學習系統、智能控制及神經網路。他已發表超過70篇期刊和會議論文,並共同撰寫兩本專著。他曾擔任多個國際會議的組織委員會成員。2013年,他獲得中國科學院的優秀博士論文獎。他擔任《IEEE神經網路與學習系統期刊》及《神經計算》的副編輯。他是IEEE、亞太神經網路學會(APNNS)及CAA的成員。

楊雄於2014年獲得中國科學院自動化研究所控制理論與控制工程博士學位。楊博士於2014年獲得中國科學院總統獎學金的優秀獎。他於2014年至2016年擔任中國科學院自動化研究所複雜系統管理與控制國家重點實驗室的助理教授。目前,他是天津大學電氣工程與自動化學院的副教授。

李洪亮於2015年獲得中國科學院大學控制理論與控制工程博士學位。李博士於2015年至2016年在IBM研究院(中國)擔任研究科學家。2016年,他加入中國深圳的騰訊公司。他在自適應動態規劃和強化學習方面已發表超過10篇期刊論文。

最後瀏覽商品 (20)