Machine Learning Control – Taming Nonlinear Dynamics and Turbulence (Fluid Mechanics and Its Applications)
暫譯: 機器學習控制 – 鎮壓非線性動力學與湍流(流體力學及其應用)
Thomas Duriez, Steven L. Brunton, Bernd R. Noack
- 出版商: Springer
- 出版日期: 2018-04-22
- 售價: $3,860
- 貴賓價: 9.5 折 $3,667
- 語言: 英文
- 頁數: 211
- 裝訂: Paperback
- ISBN: 3319821407
- ISBN-13: 9783319821405
-
相關分類:
Machine Learning、流體力學 Fluid-mechanics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
商品描述(中文翻譯)
這是一本關於普遍適用於湍流及其他複雜非線性系統的控制策略的第一本教科書。本書的方法採用了強大的機器學習技術來實現最佳非線性控制法則。機器學習控制(MLC)在第一章和第二章中進行了動機說明和詳細介紹。在第三章中,回顧了線性控制理論的方法。在第四章中,展示了MLC如何重現已知的線性動力學最佳控制法則(LQR、LQG)。在第五章中,當線性控制方法失效時,MLC能夠檢測並利用低維動態系統的強非線性驅動機制。第六章回顧了從層流剪切層到湍流邊界層的實驗控制示範,接著在第七章中提供了一般實驗的良好實踐。第八章總結了MLC在未來廣泛應用的展望。書中提供了Matlab代碼,以便輕鬆重現所呈現的結果。書中還包括了與湍流控制(S. Bagheri、B. Batten、M. Glauser、D. Williams)和機器學習(M. Schoenauer)領域的領先研究者的訪談,以提供更廣泛的視角。所有章節都有練習題,並且將通過YouTube提供補充視頻。