Machine Learning for Model Order Reduction
暫譯: 機器學習在模型降維中的應用
Khaled Salah Mohamed
- 出版商: Springer
- 出版日期: 2018-03-09
- 售價: $5,260
- 貴賓價: 9.5 折 $4,997
- 語言: 英文
- 頁數: 93
- 裝訂: Hardcover
- ISBN: 331975713X
- ISBN-13: 9783319757131
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis.
- Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;
- Describes new, hybrid solutions for model order reduction;
- Presents machine learning algorithms in depth, but simply;
- Uses real, industrial applications to verify algorithms.
商品描述(中文翻譯)
本書討論了用於模型階數降低的機器學習,這可以應用於現代 VLSI 設計中,以通過數學模型預測電子電路的行為。作者描述了顯著減少涉及大規模常微分方程的模擬所需時間的技術,這些模擬有時需要幾天甚至幾週的時間。這種方法稱為模型階數降低(Model Order Reduction, MOR),它減少了原始大型系統的複雜性,並生成一個降階模型(Reduced-Order Model, ROM)來表示原始模型。讀者將深入了解機器學習和模型階數降低的概念,使用各種算法所涉及的權衡,以及如何將所介紹的技術應用於電路模擬和數值分析。
- 介紹架構層級和算法層級的機器學習算法;
- 描述模型階數降低的新型混合解決方案;
- 深入但簡單地呈現機器學習算法;
- 使用真實的工業應用來驗證算法。