Nonparametric Kernel Density Estimation and Its Computational Aspects (Studies in Big Data)
暫譯: 非參數核密度估計及其計算方面(大數據研究)

Artur Gramacki

  • 出版商: Springer
  • 出版日期: 2018-01-22
  • 售價: $6,330
  • 貴賓價: 9.5$6,014
  • 語言: 英文
  • 頁數: 176
  • 裝訂: Hardcover
  • ISBN: 3319716875
  • ISBN-13: 9783319716879
  • 相關分類: 大數據 Big-data
  • 海外代購書籍(需單獨結帳)

商品描述

This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented.

The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this.

The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting.

The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.

商品描述(中文翻譯)

本書描述了與核密度估計(kernel density estimation, KDE)相關的計算問題,這是最重要且廣泛使用的數據平滑技術之一。本書詳細介紹了基於快速傅立葉變換(FFT)的新型算法,這些算法用於KDE計算和帶寬選擇。

KDE的理論似乎已經成熟,現在已經得到了良好的發展和理解。然而,在性能改進方面觀察到的進展並不多。本書旨在彌補這一點。

本書主要針對對KDE及其計算方面感興趣的研究人員和高級研究生或研究生。書中包含了一些背景知識以及更為複雜的材料,因此在KDE領域的更有經驗的研究人員也可能會覺得它有趣。

所呈現的材料豐富地配有許多數值範例,使用了人工和真實數據集。此外,還介紹了一些與KDE相關的實際應用。

最後瀏覽商品 (20)