Canonical Correlation Analysis in Speech Enhancement (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 語音增強中的典型相關分析 (電機與計算機工程系列簡報)
Jacob Benesty
- 出版商: Springer
- 出版日期: 2017-09-11
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 132
- 裝訂: Paperback
- ISBN: 3319670190
- ISBN-13: 9783319670195
海外代購書籍(需單獨結帳)
商品描述
This book focuses on the application of canonical correlation analysis (CCA) to speech enhancement using the filtering approach. The authors explain how to derive different classes of time-domain and time-frequency-domain noise reduction filters, which are optimal from the CCA perspective for both single-channel and multichannel speech enhancement. Enhancement of noisy speech has been a challenging problem for many researchers over the past few decades and remains an active research area. Typically, speech enhancement algorithms operate in the short-time Fourier transform (STFT) domain, where the clean speech spectral coefficients are estimated using a multiplicative gain function. A filtering approach, which can be performed in the time domain or in the subband domain, obtains an estimate of the clean speech sample at every time instant or time-frequency bin by applying a filtering vector to the noisy speech vector.
Compared to the multiplicative gain approach, the filtering approach more naturally takes into account the correlation of the speech signal in adjacent time frames. In this study, the authors pursue the filtering approach and show how to apply CCA to the speech enhancement problem. They also address the problem of adaptive beamforming from the CCA perspective, and show that the well-known Wiener and minimum variance distortionless response (MVDR) beamformers are particular cases of a general class of CCA-based adaptive beamformers.
商品描述(中文翻譯)
這本書專注於使用濾波方法將典型相關分析(Canonical Correlation Analysis, CCA)應用於語音增強。作者解釋了如何推導出不同類別的時域和時頻域噪聲減少濾波器,這些濾波器在CCA的角度下對於單通道和多通道語音增強都是最佳的。過去幾十年來,增強嘈雜語音一直是許多研究人員面臨的挑戰問題,並且仍然是一個活躍的研究領域。通常,語音增強算法在短時傅立葉變換(Short-Time Fourier Transform, STFT)域中運作,清晰語音的頻譜係數是使用乘法增益函數來估計的。濾波方法可以在時域或子帶域中執行,通過將濾波向量應用於嘈雜語音向量,獲得每個時間瞬間或時頻箱的清晰語音樣本的估計。
與乘法增益方法相比,濾波方法更自然地考慮了相鄰時間幀中語音信號的相關性。在這項研究中,作者追求濾波方法,並展示如何將CCA應用於語音增強問題。他們還從CCA的角度解決自適應波束形成的問題,並顯示著名的維納(Wiener)和最小方差無失真響應(Minimum Variance Distortionless Response, MVDR)波束形成器是基於CCA的一般類別自適應波束形成器的特例。