Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data (Cognitive Systems Monographs)
暫譯: 量化自我的機器學習:從感測數據中學習的藝術(認知系統專著)

Mark Hoogendoorn, Burkhardt Funk

  • 出版商: Springer
  • 出版日期: 2017-10-05
  • 售價: $7,850
  • 貴賓價: 9.5$7,458
  • 語言: 英文
  • 頁數: 231
  • 裝訂: Hardcover
  • ISBN: 3319663070
  • ISBN-13: 9783319663074
  • 相關分類: 感測器 SensorMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.

商品描述(中文翻譯)

本書解釋了完整的循環,以有效利用自我追蹤數據進行機器學習。雖然它專注於自我追蹤數據,但所解釋的技術也適用於一般的感測數據,使其對更廣泛的讀者群體有用。書中討論了來自最先進科學文獻的概念,並通過一個豐富的自我追蹤數據集案例研究來說明這些方法。自我追蹤已成為現代生活方式的一部分,這些設備產生的數據量龐大,以至於很難從中獲得有用的見解。幸運的是,在人工智慧領域中,有一些技術可以提供幫助:機器學習方法允許對這類數據進行分析。雖然有許多書籍解釋機器學習技術,但自我追蹤數據具有其自身的挑戰,需要專門的技術,例如隨時間和用戶進行學習。