Predicting User Performance and Errors: Automated Usability Evaluation Through Computational Introspection of Model-Based User Interfaces (T-Labs Series in Telecommunication Services)

Marc Halbrügge

相關主題

商品描述

This book proposes a combination of cognitive modeling with model-based user interface development to tackle the problem of maintaining the usability of applications that target several device types at once (e.g., desktop PC, smart phone, smart TV). Model-based applications provide interesting meta-information about the elements of the user interface (UI) that are accessible through computational introspection. Cognitive user models can capitalize on this meta-information to provide improved predictions of the interaction behavior of future human users of applications under development.

In order to achieve this, cognitive processes that link UI properties to usability aspects like effectiveness (user error) and efficiency (task completion time) are established empirically, are explained through cognitive modeling, and are validated in the course of this treatise. In the case of user error, the book develops an extended model of sequential action control based on the Memory for Goals theory and it is confirmed in different behavioral domains and experimental paradigms.

This new model of user cognition and behavior is implemented using the MeMo workbench and integrated with the model-based application framework MASP in order to provide automated usability predictions from early software development stages on. Finally, the validity of the resulting integrated system is confirmed by empirical data from a new application, eliciting unexpected behavioral patterns.

商品描述(中文翻譯)

本書提出了一種將認知建模與基於模型的用戶界面開發相結合的方法,以解決同時針對多種設備類型(例如桌面電腦、智能手機、智能電視)應用程序的可用性維護問題。基於模型的應用程序提供了有關用戶界面(UI)元素的有趣元信息,這些信息可以通過計算內省獲得。認知用戶模型可以利用這些元信息,提供對正在開發的應用程序未來人類用戶互動行為的改進預測。

為了實現這一目標,建立了將用戶界面屬性與可用性方面(如有效性(用戶錯誤)和效率(任務完成時間))聯繫起來的認知過程,這些過程是通過實證研究確立的,並通過認知建模進行解釋,並在本論文中進行驗證。在用戶錯誤的情況下,本書基於目標記憶理論開發了一個擴展的序列行動控制模型,並在不同的行為領域和實驗範式中得到了確認。

這一新的用戶認知和行為模型使用 MeMo 工作台實現,並與基於模型的應用框架 MASP 集成,以便從早期軟件開發階段開始提供自動化的可用性預測。最後,通過來自一個新應用的實證數據確認了所得到的集成系統的有效性,並引發了意想不到的行為模式。